This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles.
View Article and Find Full Text PDFAbstract: In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30-80 % when sonicating in 1 and 2.
View Article and Find Full Text PDFNovel composites of nanocellulose and the conducting polymer polypyrrole (PPy) are herein suggested as potential candidates for active ion-extraction membranes in electrochemically controlled hemodialysis. This study has defined processing parameters to obtain a biocompatible nanocellulose-PPy composite, and for the first time, the effect of the composite aging on cell viability has been studied. The influence of rinsing and extraction process steps, as well as aging under different conditions (i.
View Article and Find Full Text PDF