Hydrogels are attractive, active materials for various e-skin devices based on their unique functionalities such as flexibility and biocompatibility. Still, e-skin devices are generally limited to simple structures, and the realization of optimal-shaped 3D e-skin devices for target applications is an intriguing issue of interest. Furthermore, hydrogels intrinsically suffer from drying and freezing issues in operational capability for practical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
Human skin is a unique functional material that perfectly covers body parts having various complicated shapes, spontaneously heals mechanical damage, and senses a touch. E-skin devices have been actively researched, focusing on the sensing functionality of skin. However, most e-skin devices still have limitations in their shapes, and it is a challenging issue of interest to realize multiple functionalities in one device as human skin does.
View Article and Find Full Text PDF