Spectrochim Acta A Mol Biomol Spectrosc
May 2024
Liquid crystal materials possess hybrid liquid and solid-like properties with high response to stimuli. The 4'-alkyl-4-cyanobiphenyls (nCB) are an important class of liquid crystals that are widely used for various applications. In this study, six alkylcyanobiphenyl liquid crystal samples (5CB to 10CB) were examined using Raman spectroscopy in a total of twelve solvents of various polarities.
View Article and Find Full Text PDFWaste cooking oil (WCO) is a readily available and cheap feedstock for biodiesel production. However, WCO contains high levels of free fatty acids (FFAs), which negatively impact the biodiesel yield if homogeneous catalysts are used. Heterogeneous solid acid catalysts are preferred for low-cost feedstocks because the catalysts are highly insensitive to high levels of FFA in the feedstock.
View Article and Find Full Text PDFPolyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity.
View Article and Find Full Text PDFMolecules
February 2022
This focused review presents various approaches or formats in which liquid crystals (LCs) have been used as stimuli-responsive sensors. In these sensors, the LC molecules adopt some well-defined arrangement based on the sensor composition and the chemistry of the system. The sensor usually consists of a molecule or functionality in the system that engages in some form of specific interaction with the analyte of interest.
View Article and Find Full Text PDFWe report a new assay system for the detection of miR-21 in cancer cells. The new assay works at room temperature and it does not involve enzymatic amplification. It consists a hairpin smart probe, designed to specifically recognize miR-21 target sequence.
View Article and Find Full Text PDFZinc plays a key role in many physiological processes and has implications for the environment. Consequently, detection of chelatable zinc ion (Zn ) has attracted widespread interest from the research community. Lanthanide-based luminescent probes offer particular advantages, such as high water solubility, long luminescence lifetimes and a large Stokes' shift, over common organic dye-based fluorescent sensors.
View Article and Find Full Text PDFWe report a universal smart probe (SP) that is capable of detecting several homologous let-7 microRNAs (miRNAs). While the SP is complementary to let-7a, and therefore, strongly binds to this target, due to sequence homology, the SP also has equal propensity to non-specifically hybridize with let-7b and let-7c, which are homologous to let-7a. The fluorescence signal of the SP was switched off in the absence of any homologous member target, but the signal was switched on when any of the three homologous members was present.
View Article and Find Full Text PDFA one-dimensional hydrogen-bonded triple-stranded ladder coordination polymer [Cd(bpe)(NO)(HO)] () (where bpe = -1,2-bis(4-pyridyl)ethylene) containing three parallel C═C double bonds was synthesized. This compound undergoes photochemical [2 + 2] cycloaddition and produces -tetrakis(4-pyridyl)cyclobutane (-tpcb) in up to 67% yield via Single-Crystal-to-Single-Crystal (SCSC) transformation. Triple-stranded ladder-like structures have never before displayed such a kind of SCSC transformation.
View Article and Find Full Text PDFA fluorescent smart probe (SP) was used to detect a mixed-base ribonucleic acids sequence. While the SP presents excellent sensitivity for the target, it gives subtle discrimination between the perfect target sequence and several mismatch sequences. Its sequence-specificity for the target was greatly enhanced by using nucleic acid blockers (NABs), which are unlabeled, non-fluorescent hairpin oligonucleotides that are perfectly complementary to those mismatch sequences.
View Article and Find Full Text PDFA sensitive hairpin smart probe (SP) has been developed and tested for its sequence-specificity and sensitivity for detecting microRNAs (miRNAs). The loop sequence of this SP is perfectly complementary to microRNA-21 (miR-21) sequence. This miRNA regulates certain biological processes and has been implicated in certain forms of cancer.
View Article and Find Full Text PDFA new macro-Raman system equipped with a motorized translational sample stage and low-frequency shift capabilities was developed for bulk composition and homogeneity analysis of multi-component pharmaceutical powders. Different sampling methods including single spot and scanning measurement were compared. It was found that increasing sample volumes significantly improved the precision of quantitative composition analysis, especially for poorly mixed powders.
View Article and Find Full Text PDFIn this study, we report for the first time the use of silica-coated superparamagnetic iron oxide nanoparticles (SPION) as contrast agents in biomedical photoacoustic imaging. Using frequency-domain photoacoustic correlation (the photoacoustic radar), we investigated the effects of nanoparticle size, concentration and biological media (e.g.
View Article and Find Full Text PDFThymine is one of the pyrimidine nucleobases found in DNA. Upon absorption of UV light, thymine forms a number of photoproducts, including the cyclobutyl photodimer, the pyrimidine pyrimidinone [6-4] photoproduct and the photohydrate. Here, we use UV resonance Raman spectroscopy to measure the initial excited-state structural dynamics of the N(1)-substituted thymine derivatives N(1)-methylthymine, thymidine, and thymidine 5'-monophosphate in an effort to understand the role of the N1 substituent in determining the excited-state structural dynamics and the subsequent photochemistry.
View Article and Find Full Text PDFThe photophysics and photochemistry of nucleobases are the factors governing the photostability of DNA and RNA, since they are the UV chromophores in nucleic acids. Because the formation of photoproducts involves structural changes in the excited electronic state, we study here the initial excited-state structural dynamics of 9-methyladenine (9-MeA) by using UV resonance Raman (UVRR) spectroscopy. UV resonance Raman intensities are sensitive to the initial excited-state structural dynamics of molecules.
View Article and Find Full Text PDFUV resonance Raman spectroscopy (UVRR) is a powerful method that has the requisite selectivity and sensitivity to incisively monitor biomolecular structure and dynamics in solution. In this perspective, we highlight applications of UVRR for studying peptide and protein structure and the dynamics of protein and peptide folding. UVRR spectral monitors of protein secondary structure, such as the Amide III(3) band and the C(α)-H band frequencies and intensities can be used to determine Ramachandran Ψ angle distributions for peptide bonds.
View Article and Find Full Text PDFMolecular beacons (MBs) are sensitive probes for many DNA sequence-specific applications, such as DNA damage detection, but suffer from technical and cost limitations. We have designed smart probes with self-quenching properties as an alternative to molecular beacons to monitor sequence-specific UV-induced photodamage of oligonucleotides. These probes have similar stem-loop structural characteristics as molecular beacons, but quenching is achieved instead via photoinduced intramolecular electron transfer by neighboring guanosine residues.
View Article and Find Full Text PDFTrp-DNA adducts resulting from UV irradiation of pyrimidine bases and nucleotides in the presence of tryptophan (Trp) have been the subject of previous research. However, the relative yield of the adducts compared with the UV screening effect of Trp has not been previously considered. To determine whether Trp-DNA adduct formation or absorption "screening" by Trp is the predominant process when DNA solutions are irradiated with UV light in the presence of Trp, we irradiated Trp-containing DNA oligonucleotide solutions with UVC light and incubated aliquots of those solutions with molecular beacons (MBs) to detect the damage.
View Article and Find Full Text PDFCytosine is a nucleobase found in both DNA and RNA, while uracil is found only in RNA. Uracil has abstractable protons at N3 and N1. Cytosine has only one abstractable proton at N1 but can also accept a proton at N3.
View Article and Find Full Text PDF