Publications by authors named "Sula A"

Article Synopsis
  • * The ALS drug riluzole works by stabilizing VGSCs in their inactivated state, which suppresses excessive late sodium current (I) and reduces cellular overexcitability.
  • * Riluzole's mechanism involves entering the VGSCs through special openings in their structure, allowing for targeted inhibition of I without blocking sodium conduction, which could guide future drug design and potential repurposing of riluzole.
View Article and Find Full Text PDF

Pregnancy induces significant changes in oral health because of hormonal fluctuations, making it a crucial period for preventive measures. Dental stem cells (DSCs), particularly those derived from the dental pulp and periodontal ligaments, offer promising avenues for regenerative therapies and, possibly, preventive interventions. While the use of DSCs already includes various applications in regenerative dentistry in the general population, their use during pregnancy requires careful consideration.

View Article and Find Full Text PDF

Introduction: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular heterogeneity of solid tumors, which is one of the main obstacles for the development of effective cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin, an R package that enables the characterization of cell identity in solid tumors on the basis of a various and complementary analyses on SC gene expression data.

View Article and Find Full Text PDF

Measurements of protein higher order structure (HOS) provide important information on stability, potency, efficacy, immunogenicity, and biosimilarity of biopharmaceuticals, with a significant number of techniques and methods available to perform these measurements. The comparison of the analytical performance of HOS methods and the standardization of the results is, however, not a trivial task, due to the lack of reference protocols and reference measurement procedures. Here, we developed a protocol to structurally alter and compare samples of somatropin, a recombinant biotherapeutic, and describe the results obtained by using a number of techniques, methods and in different laboratories.

View Article and Find Full Text PDF

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites.

View Article and Find Full Text PDF

The 1-aryl-tetrahydroisoquinoline (1-aryl-THIQ) moiety is found in many biologically active molecules. Single enantiomer chemical syntheses are challenging and although some biocatalytic routes have been reported, the substrate scope is limited to certain structural motifs. The enzyme norcoclaurine synthase (NCS), involved in plant alkaloid biosynthesis, has been shown to perform stereoselective Pictet-Spengler reactions between dopamine and several carbonyl substrates.

View Article and Find Full Text PDF

Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for the treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations. This study used high-resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels.

View Article and Find Full Text PDF

Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA.

View Article and Find Full Text PDF

Voltage-gated sodium channels (Navs) are responsible for the initiation of the action potential in excitable cells. Several prokaryotic sodium channels, most notably NavMs from and NavAb from , have been shown to be good models for human sodium channels based on their sequence homologies and high levels of functional similarities, including ion flux, and functional consequences of critical mutations. The complete full-length crystal structures of these prokaryotic sodium channels captured in different functional states have now revealed the molecular natures of changes associated with the gating process.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how charge interactions between lipids and the outer membrane porin F (OmpF) influence lipid binding using native mass spectrometry.
  • Binding behaviors for anionic (POPG) and zwitterionic (POPC) lipids depend on changes in charge and electrospray polarity, with OmpF showing higher sensitivity compared to other membrane proteins studied.
  • The findings suggest that OmpF’s unique structure, with a high density of charged residues, aids in binding anionic lipids, potentially impacting antibiotic access through the porin pathway.
View Article and Find Full Text PDF

Purified integral membrane proteins require amphipathic molecules to maintain their solubility in aqueous solutions. These complexes, in turn, are used in studies to characterise the protein structures by a variety of biophysical and structural techniques, including spectroscopy, crystallography, and cryo-electron microscopy. Typically the amphilphiles used have been detergent molecules, but more recently they have included amphipols, which are polymers of different sizes and compositions designed to create smaller, more well-defined solubilised forms of the membrane proteins.

View Article and Find Full Text PDF

Norcoclaurine synthase (NCS) is a Pictet-Spenglerase that catalyzes the first key step in plant benzylisoquinoline alkaloid metabolism, a compound family that includes bioactive natural products such as morphine. The enzyme has also shown great potential as a biocatalyst for the formation of chiral isoquinolines. Here we present new high-resolution X-ray crystallography data describing Thalictrum flavum NCS bound to a mechanism-inspired ligand.

View Article and Find Full Text PDF

Voltage-gated sodium channels enable the translocation of sodium ions across cell membranes and play crucial roles in electrical signaling by initiating the action potential. In humans, mutations in sodium channels give rise to several neurological and cardiovascular diseases, and hence they are targets for pharmaceutical drug developments. Prokaryotic sodium channel crystal structures have provided detailed views of sodium channels, which by homology have suggested potentially important functionally related structural features in human sodium channels.

View Article and Find Full Text PDF

Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.

View Article and Find Full Text PDF

Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels.

View Article and Find Full Text PDF

Voltage-gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel.

View Article and Find Full Text PDF

Background: Mutations in dysferlin, the first protein linked with the cell membrane repair mechanism, causes a group of muscular dystrophies called dysferlinopathies. Dysferlin is a type two-anchored membrane protein, with a single C terminal trans-membrane helix, and most of the protein lying in cytoplasm. Dysferlin contains several C2 domains and two DysF domains which are nested one inside the other.

View Article and Find Full Text PDF