Drug-induced liver injury (DILI) is one of the leading causes of liver failure and withdrawal of drugs from the market. A poor understanding of the precipitating event aetiology and mechanisms of disease progression has rendered the prediction and subsequent treatment intractable. Recent literature suggests that some drugs can alter the liver's repair systems resulting in injury.
View Article and Find Full Text PDFObjectives: Anti-TB drugs-isoniazid and rifampicin induced hepatotoxicity present a significant clinical problem. We aimed to evaluate the beneficial effect of gallic acid in anti-TB drug-induced liver injury in vivo and for the mechanism of action, we explored the influence of gallic acid on Nrf2 and NF-κB pathways.
Methods: We assessed serum liver function tests and histopathological analysis for the preventive effect of gallic acid on liver injury.
Isoniazid and rifampicin are crucial for treating tuberculosis (TB); however, they can cause severe hepatotoxicity leading to liver failure. Therapeutic options are limited and ineffective. We hypothesized that prophylaxis with quercetin attenuates isoniazid- and rifampicin-induced liver injury.
View Article and Find Full Text PDFEur J Clin Pharmacol
April 2017
Purpose: MicroRNAs (miRNA or miR) are the most abundant and stable class of small RNA. Unlike the typical RNA molecules present in the cell, they do not encode proteins but can control translation. and Hhence, they are found to play a major role in the regulation of cellular processes.
View Article and Find Full Text PDF