Voltage gating is essential to the computational ability of neurons. We show this effect can be mimicked in a solid-state nanopore by functionalizing the pore interior with a redox active molecule. We study the integration of an active biological molecule-a quinone-into a solid state nanopore, and its subsequent induced voltage gating.
View Article and Find Full Text PDFNanopores based on protein channels inserted into lipid membranes have paved the way towards a wide-range of inexpensive biosensors, especially for DNA sequencing. A key obstacle in using these biological ion channels as nanodevices is the poor stability of lipid bilayer membranes. Amphiphilic block copolymer membranes have emerged as a robust alternative to lipid membranes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2015
Solid-state nanopores have emerged as a single molecule label-free electronic detection platform. Existing transimpedance stages used to measure ionic current nanopores suffer from dynamic range limitations resulting from steady-state baseline currents. We propose a digitally-assisted baseline cancellation CMOS platform that circumvents this issue.
View Article and Find Full Text PDF