Although alcohol and nicotine are often used together, the biological consequences of these substances are not well understood. Identifying shared targets will inform cessation pharmacotherapies and provide a deeper understanding of how co-use of alcohol and nicotine impacts health, including biomarkers of stress and inflammation. We examined the effects of nicotine exposure and withdrawal on alcohol self-administration (SA), stress and inflammatory biomarkers, and a G-protein coupled receptor subunit (Gβ) in brain areas associated with drug use.
View Article and Find Full Text PDF, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive.
View Article and Find Full Text PDFThe βγ subunit of heterotrimeric G proteins, a key molecule in the G protein-coupled receptors (GPCRs) signaling pathway, has been shown to be an important factor in the modulation of the microtubule cytoskeleton. Gβγ has been shown to bind to tubulin, stimulate microtubule assembly, and promote neurite outgrowth of PC12 cells. In this study, we demonstrate that in addition to microtubules, Gβγ also interacts with actin filaments, and this interaction increases during NGF-induced neuronal differentiation of PC12 cells.
View Article and Find Full Text PDFBackground: The migration of tumor cells is critical in spreading cancers through the lymphatic nodes and circulatory systems. Although arachidonic acid (AA) and its soluble metabolites have been shown to induce the migration of breast and colon cancer cells, the mechanism by which it induces such migration has not been fully understood.
Objective: The effect of AA on migratory responses of the MDA-MB-231 cell line (a triple-negative breast cancer cell) was examined and compared with MCF-7 (estrogen-receptor positive) breast cancer cells to elucidate the mechanism of AA-induced migration.
Microtubules (MTs) constitute a crucial part of the cytoskeleton and are essential for cell division and differentiation, cell motility, intracellular transport, and cell morphology. Precise regulation of MT assembly and dynamics is essential for the performance of these functions. Although much progress has been made in identifying and characterizing the cellular factors that regulate MT assembly and dynamics, signaling events in this process is not well understood.
View Article and Find Full Text PDFAlthough encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs.
View Article and Find Full Text PDFBackground: Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth.
View Article and Find Full Text PDFThe production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified.
View Article and Find Full Text PDFHeterotrimeric Gproteins participate in signal transduction by transferring signals from cell surface receptors to intracellular effector molecules. Gproteins also interact with microtubules and participate in microtubule-dependent centrosome/chromosome movement during cell division, as well as neuronal differentiation. In recent years, significant progress has been made in our understanding of the biochemical/functional interactions between Gprotein subunits (alpha and betagamma) and microtubules, and the molecular details emerging from these studies suggest that alpha and betagamma subunits of Gproteins interact with tubulin/microtubules to regulate the assembly/dynamics of microtubules, providing a novel mechanism for hormone- or neurotransmitter-induced rapid remodeling of cytoskeleton, regulation of the mitotic spindle for centrosome/chromosome movements in cell division, and neuronal differentiation in which structural plasticity mediated by microtubules is important for appropriate synaptic connections and signal transmission.
View Article and Find Full Text PDFAlthough encystation (cyst formation) is important for the survival of Giardia lamblia outside its human host, the molecular events that prompt encystation have not been fully elucidated. Here, we demonstrate that sphingolipids (SLs), which are important for the growth and differentiation of many eukaryotes, play key roles in giardial encystation. Transcriptional analyses showed that only three genes in the SL biosynthesis pathways are expressed and transcribed differentially in nonencysting and encysting Giardia trophozoites.
View Article and Find Full Text PDFThe betagamma subunit of G proteins (Gbetagamma) is known to transfer signals from cell surface receptors to intracellular effector molecules. Recent results suggest that Gbetagamma also interacts with microtubules and is involved in the regulation of the mitotic spindle. In the current study, the anti-microtubular drug nocodazole was employed to investigate the mechanism by which Gbetagamma interacts with tubulin and its possible implications in microtubule assembly in cultured PC12 cells.
View Article and Find Full Text PDFAlthough identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process.
View Article and Find Full Text PDFHeterotrimeric G proteins participate in signal transduction by transferring signals from cell surface receptors to intracellular effector molecules. Interestingly, recent results suggest that G proteins also interact with microtubules and participate in cell division and differentiation. It has been shown earlier that both alpha and betagamma subunits of G proteins modulate microtubule assembly in vitro.
View Article and Find Full Text PDF