The circadian clock regulates the daily pattern of temporal gene expression. In Arabidopsis, aging is associated with a shortening of the endogenous period of circadian rhythms under circadian conditions. However, the functional link between the circadian clock and aging under diurnal conditions and its physiological relevance remain elusive.
View Article and Find Full Text PDFLeaf senescence is regulated by diverse developmental and environmental factors to maximize plant fitness. The red to far-red light ratio (R:FR) detected by plant phytochromes is reduced under vegetation shade, thus initiating leaf senescence. However, the role of phytochromes in promoting leaf senescence under FR-enriched conditions is not fully understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2018
The circadian clock coordinates the daily cyclic rhythm of numerous biological processes by regulating a large portion of the transcriptome. In animals, the circadian clock is involved in aging and senescence, and circadian disruption by mutations in clock genes frequently accelerates aging. Conversely, aging alters circadian rhythmicity, which causes age-associated physiological alterations.
View Article and Find Full Text PDF