Enhancer of zeste homolog 2 (EZH2) catalyses histone H3 lysine 27 trimethylation (H3K27me3) to silence tumour-suppressor genes in hepatocellular carcinoma (HCC) but the process of locus-specific recruitment remains elusive. Here we investigated the transcription factors involved and the molecular consequences in HCC development. The genome-wide distribution of H3K27me3 was determined by chromatin immunoprecipitation coupled with high-throughput sequencing or promoter array analyses in HCC cells from hepatitis B virus (HBV) X protein transgenic mouse and human cell models.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is a worldwide threat to public health, especially in China, where chronic hepatitis B virus (HBV) infection is found in 80-90% of all HCCs. The HBV-encoded X antigen (HBx) is a trans-regulatory protein involved in virus-induced hepatocarcinogenesis. Although the carboxyl-terminus-truncated HBx, rather than the full-length counterpart, is frequently overexpressed in human HCCs, its functional mechanisms are not fully defined.
View Article and Find Full Text PDFBackground & Aims: Deregulation of forkhead box (Fox) proteins, an evolutionarily conserved family of transcriptional regulators, leads to tumorigenesis. Little is known about their regulation or functions in the pathogenesis of gastric cancer. Promoter hypermethylation occurs during Helicobacter pylori-induced gastritis.
View Article and Find Full Text PDFBackground: The biological pathways and functional properties by which misexpressed microRNAs (miRNAs) contribute to liver carcinogenesis have been intensively investigated. However, little is known about the upstream mechanisms that deregulate miRNA expressions in this process. In hepatocellular carcinoma (HCC), hepatitis B virus (HBV) X protein (HBx), a transcriptional trans-activator, is frequently expressed in truncated form without carboxyl-terminus but its role in miRNA expression and HCC development is unclear.
View Article and Find Full Text PDFEnhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the Polycomb-repressive complex 2 (PRC2) that represses gene transcription through histone H3 lysine 27 trimethylation (H3K27me3). Although EZH2 is abundantly present in various cancers, the molecular consequences leading to oncogenesis remain unclear. Here, we show that EZH2 concordantly silences the Wnt pathway antagonists operating at several subcellular compartments, which in turn activate Wnt/β-catenin signaling in hepatocellular carcinomas (HCC).
View Article and Find Full Text PDF