Publications by authors named "Sukhwinder S Lakhman"

The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors.

View Article and Find Full Text PDF

Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions.

View Article and Find Full Text PDF

The understanding of the cytochrome P450 3A SNP in antiretroviral therapy is important, because it is highly inducible, extremely polymorphic and metabolizes many of the drugs that are key components of highly active antiretroviral therapy regimens. This enzyme is prolific and promiscuous towards drug and xenobiotic substrate selection and it is also unpredictable among individuals, having a 5- to 20-fold variability in its ability to contribute to drug clearance. The importance of human CYP3A pharmacogenetics is also gaining attention in other established areas of pharmacotherapy as it may contribute to the goal of predicting efficacy and/or toxicity, specifically with the discovery of null allele CYP3A4*20.

View Article and Find Full Text PDF

Human carbonyl reductase 1 (CBR1) metabolizes a variety of substrates, including the anticancer doxorubicin and the antipsychotic haloperidol. The transcriptional regulation of CBR1 has been largely unexplored. Therefore, we first investigated the promoter activities of progressive gene-reporter constructs encompassing up to 2.

View Article and Find Full Text PDF

Human carbonyl reductase 1 (CBR1) metabolizes endogenous and xenobiotic substrates such as the fever mediator, prostaglandin E2 (PGE2), and the anticancer anthracycline drug, daunorubicin. We screened 33 CBR1 full-length cDNA samples from white and black liver donors and performed database analyses to identify genetic determinants of CBR1 activity. We pinpointed a single nucleotide polymorphism on CBR1 (CBR1 V88I) that encodes for a valine-to-isoleucine substitution for further characterization.

View Article and Find Full Text PDF

In human liver, the two-electron reduction of quinone compounds, such as menadione is catalyzed by cytosolic carbonyl reductase (CBR) and NAD(P)H:quinone oxidoreductase (NQO1) activities. We assessed the relative contributions of CBR and NQO1 activities to the total menadione reducing capacity in liver cytosols from black (n=31) and white donors (n=63). Maximal menadione reductase activities did not differ between black (13.

View Article and Find Full Text PDF

Human carbonyl reductase (CBR) activity accounts for a significant fraction of the metabolism of endogenous and xenobiotic carbonyl compounds. It is possible that genetic polymorphisms in CBR1 and CBR3 are key for the wide interindividual variability in the disposition of CBR drug substrates. We pinpointed a single nucleotide polymorphism in CBR3 (CBR3 V244M) that encodes for a V244 to M244 change.

View Article and Find Full Text PDF

Modulation of calcium channels plays an important role in many cellular processes. Previous studies have shown that the L-type Ca(2+) channels in Drosophila larval muscles are modulated via a cAMP-protein kinase A (PKA)-mediated pathway. This raises questions on the identity of the steps prior to cAMP, particularly the endogenous signal that may initiate this modulatory cascade.

View Article and Find Full Text PDF