Tailor-made enzymes empower a wide range of versatile applications, although searching for the desirable enzymes often requires high throughput screening and thus poses significant challenges. In this study, we employed homology searches and protein language models to discover and prioritize enzymes by their kinetic parameters. We aimed to discover kynureninases as a potentially versatile therapeutic enzyme, which hydrolyses L-kynurenine, a potent immunosuppressive metabolite, to overcome the immunosuppressive tumor microenvironment in anticancer therapy.
View Article and Find Full Text PDFThe recent CASP15 competition highlighted the critical role of multiple sequence alignments (MSAs) in protein structure prediction, as demonstrated by the success of the top AlphaFold2-based prediction methods. To push the boundaries of MSA utilization, we conducted a petabase-scale search of the Sequence Read Archive (SRA), resulting in gigabytes of aligned homologs for CASP15 targets. These were merged with default MSAs produced by ColabFold-search and provided to ColabFold-predict.
View Article and Find Full Text PDFCHESS 3 represents an improved human gene catalog based on nearly 10,000 RNA-seq experiments across 54 body sites. It significantly improves current genome annotation by integrating the latest reference data and algorithms, machine learning techniques for noise filtering, and new protein structure prediction methods. CHESS 3 contains 41,356 genes, including 19,839 protein-coding genes and 158,377 transcripts, with 14,863 protein-coding transcripts not in other catalogs.
View Article and Find Full Text PDFThe recent CASP15 competition highlighted the critical role of multiple sequence alignments (MSAs) in protein structure prediction, as demonstrated by the success of the top AlphaFold2-based prediction methods. To push the boundaries of MSA utilization, we conducted a petabase-scale search of the Sequence Read Archive (SRA), resulting in gigabytes of aligned homologs for CASP15 targets. These were merged with default MSAs produced by ColabFold-search and provided to ColabFold-predict.
View Article and Find Full Text PDFRecently developed methods to predict three-dimensional protein structure with high accuracy have opened new avenues for genome and proteome research. We explore a new hypothesis in genome annotation, namely whether computationally predicted structures can help to identify which of multiple possible gene isoforms represents a functional protein product. Guided by protein structure predictions, we evaluated over 230,000 isoforms of human protein-coding genes assembled from over 10,000 RNA sequencing experiments across many human tissues.
View Article and Find Full Text PDFBiogeochemical and microbiological characterization of marine sediments taken from the Yellow Sea of South Korea was carried out. One hundred and thirty six bacterial strains were isolated, characterized and phylogenetic relationship was evaluated. The gene sequences of 16S rDNA regions were examined to study the phylogenetic analysis of bacterial community in the marine sediments.
View Article and Find Full Text PDF