Publications by authors named "Sukhoon Oh"

Deep learning (DL) in magnetic resonance imaging (MRI) shows excellent performance in image reconstruction from undersampled k-space data. Artifact-free and high-quality MRI reconstruction is essential for ensuring accurate diagnosis, supporting clinical decision-making, enhancing patient safety, facilitating efficient workflows, and contributing to the validity of research studies and clinical trials. Recently, deep learning has demonstrated several advantages over conventional MRI reconstruction methods.

View Article and Find Full Text PDF

Proton resonance frequency shift (PRFS) is an MRI-based simple temperature mapping method that exhibits higher spatial and temporal resolution than temperature mapping methods based on T1 relaxation time and diffusion. PRFS temperature measurements are validated against fiber-optic thermal sensors (FOSs). However, the use of FOSs may introduce temperature errors, leading to both underestimation and overestimation of PRFS measurements, primarily due to material susceptibility changes caused by the thermal sensors.

View Article and Find Full Text PDF

The wide-open side of an open magnetic resonance imaging (MRI) system allows a patient to easily contact the patient assistant during MRI scans. A wide-open-shaped magnet is highly effective when interventional procedures are necessary. Patient assistants can provide comfort by holding a part of the patient's body.

View Article and Find Full Text PDF

Arterial thromboembolism is associated with high morbidity and mortality rates in cats. Definitive diagnosis requires advanced imaging modalities, such as computed tomography angiography (CTA) and contrast-enhanced (CE) magnetic resonance angiography (MRA). However, CTA involves exposure to a large amount of ionized radiation, and CE-MRA can cause systemic nephrogenic fibrosis.

View Article and Find Full Text PDF

The core body temperature tends to decrease under general anesthesia. Consequently, monitoring the core body temperature during procedures involving general anesthesia is essential to ensure patient safety. In veterinary medicine, rectal temperature is used as an indicator of the core body temperature, owing to the accuracy and convenience of this approach.

View Article and Find Full Text PDF

A method is presented to measure the radio-frequency (RF) vector magnetic field inside an object using magnetic resonance imaging (MRI). Conventional " [Formula: see text] mapping" in MRI can measure the proton co-rotating component ( [Formula: see text] of the RF field produced by a transmit coil. Here we show that by repeating [Formula: see text] mapping on the same object and coil at multiple (8) specific orientations with respect to the main magnet, the magnitudes and relative phases of all (x, y, z) Cartesian components of the RF field can be determined unambiguously.

View Article and Find Full Text PDF

Streptozotocin treatment has emerged as an alternative model of sporadic Alzheimer's disease (SAD). Streptozotocin-induced alterations in iron and calcium levels reflect magnetic susceptibility changes, while susceptibility distribution in the cerebral regions has not been reported yet. This study aimed to investigate susceptibility distribution in the limbic system after streptozotocin administration to cynomolgus monkeys for exploring informative SAD biomarkers.

View Article and Find Full Text PDF

Purpose: Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency shift temperature imaging for MRI-induced radiofrequency heating evaluation.

Methods: A compressed sensing approach that exploits sparsity of the complex difference between postheating and baseline images is proposed to accelerate proton resonance frequency temperature mapping. The method exploits the intra-image and inter-image correlations to promote sparsity and remove shared aliasing artifacts.

View Article and Find Full Text PDF

Purpose: To describe and introduce new software capable of accurately simulating MR signal, noise, and specific absorption rate (SAR) given arbitrary sample, sequence, static magnetic field distribution, and radiofrequency magnetic and electric field distributions for each transmit and receive coil.

Theory And Methods: Using fundamental equations for nuclear precession and relaxation, signal reception, noise reception, and calculation of SAR, a versatile MR simulator was developed. The resulting simulator was tested with simulation of a variety of sequences demonstrating several common imaging contrast types and artifacts.

View Article and Find Full Text PDF

Purpose: To compare numerically simulated and experimentally measured temperature increase due to specific energy absorption rate from radiofrequency fields.

Methods: Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of magnetic resonance thermography. The phantom and forearm were also modeled from magnetic resonance image data, and both specific energy absorption rate and temperature change as induced by the same coil were simulated numerically.

View Article and Find Full Text PDF

We present an approach to performing rapid calculations of temperature within tissue by interleaving, at regular time intervals, 1) an analytical solution to the Pennes (or other desired) bioheat equation excluding the term for thermal conduction and 2) application of a spatial filter to approximate the effects of thermal conduction. Here, the basic approach is presented with attention to filter design. The method is applied to a few different cases relevant to magnetic resonance imaging, and results are compared to those from a full finite-difference (FD) implementation of the Pennes bioheat equation.

View Article and Find Full Text PDF

Passive dielectric materials have been used to improve aspects of MRI by affecting the distribution of radiofrequency electromagnetic fields. Recently, interest in such materials has increased with the number of high-field MRI sites. Here, we introduce a new material composed of sintered high-permittivity ceramic beads in deuterated water.

View Article and Find Full Text PDF

We present a quadrature volume coil designed for brain imaging of a macaque monkey fixed in a sphinx position (facing down the bore) within a stereotactic frame at 3 T, where the position of the monkey and presence of the frame preclude use of existing coils. Requirements include the ability to position and remove the coil without disturbing the position of the monkey in the frame. A saddle coil and a solenoid were combined on a modified cylindrical former and connected in quadrature as to produce a homogeneous circularly polarized field throughout the brain.

View Article and Find Full Text PDF

Purpose: To improve the homogeneity of transmit volume coils at high magnetic fields (> or =4 T). Due to radiofrequency (RF) field/tissue interactions at high fields, 4 T to 8 T, the transmit profile from head-sized volume coils shows a distinctive pattern with relatively strong RF magnetic field B(1) in the center of the brain.

Materials And Methods: In contrast to conventional volume coils at high field strengths, surface coil phased arrays can provide increased RF field strength peripherally.

View Article and Find Full Text PDF

It is important to accurately characterize the heating of tissues due to the radiofrequency energy applied during MRI. This has led to an increase in the use of numerical methods to predict specific energy absorption rate distributions for safety assurance in MRI. To ensure these methods are accurate for actual MRI coils, however, it is necessary to compare to experimental results.

View Article and Find Full Text PDF