Publications by authors named "Sukhamay Lahiri"

This article addresses the disparity in the transduction pathways for hypoxic and hypercapnic stimuli in carotid body glomus cells. We investigated and reviewed the experimental evidence showing that the response to hypoxia, but not to hypercapnia, is mediated by 1,4,5-inositol triphosphate receptors (IPR/s) regulating the intracellular calcium content [Ca] in glomus cells. The rationale was based on the past observations that inhibition of oxidative phosphorylation leads to the explicit inhibition of the hypoxic chemoreflex.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is caused by mutations in the DMD gene resulting in an absence of dystrophin in neurons and muscle. Respiratory failure is the most common cause of mortality and previous studies have largely concentrated on diaphragmatic muscle necrosis and respiratory failure component. Here, we investigated the integrity of respiratory control mechanisms in the mdx mouse model of DMD.

View Article and Find Full Text PDF

Aim: To investigate changes in colour discrimination as a result of chronic hypoxic exposure induced by extreme altitudes (above 8000 m) during an expedition to Mt Everest.

Methods: Colour discrimination thresholds for tritan, protan and deutan axes were measured extensively in two male participants (four eyes) during an expedition to Mt Everest, using a quantitative, computer controlled psychophysical colour vision test (modified version of the Cambridge Colour Test). The tests were carried out over a period of 54 days at altitudes of 1300 m, 3450 m, 4410 m, 5060 m, 5300 m, 6450 m, 7200 m and 8000 m.

View Article and Find Full Text PDF

Physiological responses to hypoxia either continuous (CH) or intermittent (IH) depend on the O(2)-sensing ability of the peripheral arterial chemoreceptors, especially the carotid bodies, and the ensuing reflexes play important roles in maintaining homeostasis. The purpose of this article is to summarize the effects of CH and IH on carotid body function and the underlying mechanisms. CH increases baseline carotid body activity and sensitizes the response to acute hypoxia.

View Article and Find Full Text PDF

Chelation of iron in in vitro carotid body emulates the effects of hypoxia. The role iron plays in in vivo ventilatory responses is unclear. In the current study we addressed this issue by examining the effects of chronic iron chelation on the hypoxic ventilatory response in 9 conscious Wistar rats.

View Article and Find Full Text PDF

We examined the hypothesis that hypoxic chemotransduction with stabilization of HIF-1 and activation of purinoceptors stimulate the endogenous NO production in the rat carotid body. The effects of blockade of purinoceptors with suramin, or blockade of HIF-1alpha hydroxylation by suppressing prolyl hydroxylase (PAH) activity on the endogenous NO release measured electrochemically by microsensor inserted into the isolated carotid body superfused with bicarbonate-buffer were examined. Suramin did not change the resting NO level under normoxic conditions but it significantly decreased the hypoxia-induced NO elevation in a dose-dependent manner.

View Article and Find Full Text PDF

Addition of Pco ( approximately 350 Torr) to a normoxic medium (Po(2) of approximately 130 Torr) was used to investigate the relationship between carotid body (CB) sensory discharge and expression of hypoxia-inducible factor 1 alpha (HIF-1 alpha) in glomus cells. Afferent electrical activity measured for in vitro-perfused rat CB increased rapidly (1-2 s) with addition of high CO (Pco of approximately 350 Torr; Po(2) of approximately 130 Torr), and this increase was fully reversed by white light. At submaximal light intensities, the extent of reversal was much greater for monochromatic light at 430 and 590 nm than for light at 450, 550, and 610 nm.

View Article and Find Full Text PDF

High altitude and the decreased environmental oxygen pressure have both immediate and chronic effects on the carotid body. An immediate effect is to limit the oxygen available for mitochondrial oxidative phosphorylation, and this leads to increased activity on the afferent nerves leading to the brain. In the isolated carotid body preparation, the afferent nerve activity depends on the ratio of carbon monoxide (CO), an inhibitor of respiratory chain function, to oxygen.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1alpha (HIF-1alpha) protein, a heterodimeric transcription factor that regulates transcriptional activation of several genes, is involved in adaptive responses to hypoxia. Earlier, we have reported that in carotid body (CB), the peripheral oxygen sensing organ, HIF-1alpha is up-regulated during hypoxia. One model proposes that an intact mitochondrial respiratory chain is necessary for this regulation of HIF-1alpha.

View Article and Find Full Text PDF

Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1alpha in non-excitable cells. Whether Fe2+-chelation can inhibit the ion channels giving rise to the sensory responses in excitable cells was the question.

View Article and Find Full Text PDF

The hypoxia inducible factor-1alpha (HIF-1alpha) protein level is increased by hypoxia and iron chelator (ciclopirox olamine) in isolated rat carotid body (CB) and glomus cells. Reverse transcription and polymerase chain reaction (RT-PCR) are performed to test whether this increase is caused, at least in part, by increased HIF-1alpha gene transcription. HIF-1alpha mRNA levels dose-dependently increased and decreased in the rat CBs incubated for 1 h in a medium saturated with O(2) levels that were varied around nominally normoxic level of 21% in the 0-95% range.

View Article and Find Full Text PDF

The present investigation provides for the first time, unambiguous information on the occurrence of hypoxia-inducible factors (HIF-1alpha and HIF-1beta proteins) in normoxia (Nx) and their interaction with hypoxia (Hx) and intracellular Fe(2+) chelation in the rat carotid body (CB) glomus cells. HIF-1alpha bound to HIF-1beta translocated into the nucleus is identified on the basis of immunohistochemistry and immunofluorescence. In Nx, a weak expression of HIF-1alpha was observed in CB glomus cells.

View Article and Find Full Text PDF

H(+) is maintained constant in the internal environment at a given body temperature independent of external environment according to Bernard's principle of "milieu interieur". But CO2 relates to ventilation and H(+) to kidney. Hence, the title of the chapter.

View Article and Find Full Text PDF

We have reinvestigated the hypothesis of the relative importance of glomus cell plasma and mitochondrial membrane potentials (E(m) and psi(m), respectively) in acute hypoxia by a noninvasive fluorescence microimaging technique using the voltage-sensitive dyes bis-oxonol and JC-1, respectively. Short-term (24 h)-cultured rat glomus cells and cultured PC-12 cells were used for the study. Glomus cell E(m) depolarization was indirectly confirmed by an increase in bis-oxonol (an anionic probe) fluorescence due to a graded increase in extracellular K(+).

View Article and Find Full Text PDF

The hypothesis that chelation of free iron, by decreasing reactive oxygen species (ROS), might mimic hypoxia and stimulate the carotid body was tested. We used the iron chelators, desferrioxamine (DFO, 200-400 microM) initially, and later ciclopirox olamine (CPX, 2.5-5.

View Article and Find Full Text PDF

The hypothesis that the light sensitive properties of CO-induced chemosensory nerve (CSN) discharge and oxygen consumption of the carotid body (CB) were shared by the pre-synaptic glomus cells was tested. The light effect on K(+) currents were measured before and during perfusion of the isolated rat glomus cells with high P(CO) of 550 Torr during nomoxia (P(O(2)approximately equal 100 Torr) at extra-cellular pH 7.0 and intracellular pH 6.

View Article and Find Full Text PDF

Recurrent sleep apnea (RSA), mimicking chronic intermittent hypoxia (CIH), may trigger unique adaptations in oxygen sensing in the carotid body, and consequent cellular functions unlike the effects of sustained hypoxia (SH). As a mechanism, an augmented generation of reactive oxygen species (ROS) in CIH has been invoked at the exclusion of SH effects. The ROS might act at hypoxia inducible factors (HIF-1s), giving rise to various genes whose function is to restore the tissue P(O(2)) close to the original.

View Article and Find Full Text PDF