Publications by authors named "Sukdeb Mandal"

In the quest of recognizing hazardous nitro-aromatic compounds in water, two pyridine-functionalized Schiff-base chemosensors, DMP ((E)-N-(3,4-dimethoxybenzylidene)(pyridin-2-yl)methanamine)) and MP (4-((E)-((pyridin-2-yl)methylimino)methyl)-2-ethoxyphenol) have been synthesized to detect mutagenic 2,4,6-Trinitrophenol (TNP) in soil, water as well as cellular matrices by producing turn-off emission responses as a combined consequence of PET and RET processes. Several experimental analyses including ESI-MS, FT-IR, photoluminescence, H NMR titration, and the theoretical calculations ascertained the formation and sensing efficacies of the chemosensors. The analytical substantiations revealed that structural variation of the chemosensors played a significant role in improving the sensing efficiency, which would certainly be worthwhile in developing small molecular TNP sensors.

View Article and Find Full Text PDF

Herein, an amine decorated Cd(II) metal-organic framework (MOF) with a uninodal 6-c topology was synthesized as a suitable platform for facile post-synthetic modification (PSM). The as-synthesized parent d-MOF (1) with free -NH centers, when functionalized with two different carbonyl substituents (1-naphthaldehyde and benzophenone) of varying conjugation, produces two novel luminescent MOFs (LMOFs) PSM-1 and PSM-2. The judicious incorporation of carbonyl substituents into the skeleton of 1 was rationalized ESI-MS, H-NMR, FT-IR and PXRD analyses.

View Article and Find Full Text PDF

Supramolecular luminescent frameworks with conjugated architectures exhibits interesting photophysical properties with phenomenal chemical and thermal stability. This has instigated global researchers towards its extensive application in toxic analyte detection and the formulation of anti-counterfeit materials. In correlation with this present scenario, luminescent metal-organic frameworks (LMOFs), possessing tailorable structural and functional properties and exceptional physicochemical features, have been categorized as emerging 'smart materials'.

View Article and Find Full Text PDF

Herein, two luminescent porous networks ( & ) have been reported for the efficient detection of formaldehyde (FA) from aqueous medium. Judicious solvent screening using a high-throughput solvothermal procedure leads to two completely different metal-organic framework (MOFs) with different architectures. It is perceived that the framework shows better sensitivity with a very short response time (1 min) in the realm of FA detection due to the facile imine (-N═CH-) formation, which is restricted in the case of .

View Article and Find Full Text PDF

A simple condensation of chitosan (from shrimp shells) and 4-hydroxybenzaldehyde was performed to yield bio-lubricant additive comprised of azomethine functional groups to be used with paraffin lube oil in industries. The synthesized Schiff base derivative of chitosan (SBC) additive was characterized using a CHN analyzer and FT-IR spectroscopy, and the thermal stability was explored using thermogravimetry. The rheological properties of SBC additives in paraffin oil were studied and are discussed herein.

View Article and Find Full Text PDF