Publications by authors named "Sukanya Chaudhury"

Lung infection with Pseudomonas aeruginosa is the leading cause of death among cystic fibrosis patients. To initiate infection, P. aeruginosa assembles a protein nanomachine, the type III secretion system (T3SS), to inject bacterial proteins directly into target host cells.

View Article and Find Full Text PDF

The type III secretion system (T3SS) is essential in the pathogenesis of Yersinia pestis, the causative agent of plague. A small protein, LcrG, functions as a chaperone to the tip protein LcrV, and the LcrG-LcrV interaction is important in regulating protein secretion through the T3SS. The atomic structure of the LcrG family is currently unknown.

View Article and Find Full Text PDF

Unlabelled: Measles virus (MeV), a morbillivirus within the paramyxovirus family, expresses two envelope glycoproteins. The attachment (H) protein mediates receptor binding, followed by triggering of the fusion (F) protein, which leads to merger of the viral envelope with target cell membranes. Receptor binding by members of related paramyxovirus genera rearranges the head domains of the attachment proteins, liberating an F-contact domain within the attachment protein helical stalk.

View Article and Find Full Text PDF

The human pathogen Yersinia pestis requires the assembly of the type III secretion system (T3SS) for virulence. The structural component of the T3SS contains an external needle and a tip complex, which is formed by LcrV in Y. pestis.

View Article and Find Full Text PDF

Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases.

View Article and Find Full Text PDF

The developmental profile of the different isoforms of NaKATPase have been investigated using primary cultures of isolated neurons initiated from 17 day old fetal rat brain. Northern blot analysis showed that the expression of three alpha isoforms (alpha(1), alpha(2) and alpha(3)) and two beta isoforms (beta(1) and beta(2)) increased progressively and reached a peak between 12 to 16 days of culture. Comparison of the mRNA levels of these isoforms in the cells maintained in thyroid hormone deficient (TH def) and thyroid hormone supplemented (TH sup) media for 6-12 days, revealed for the first time that in the neurons three alpha and two beta isoforms of NaKATPase are sensitive to TH.

View Article and Find Full Text PDF