Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery.
View Article and Find Full Text PDFDespite the significant advances in neurology, the cure for neurodegenerative conditions remains a formidable task to date. Among various factors arising from the complex etiology of neurodegenerative diseases, neuroinflammation and oxidative stress play a major role in pathogenesis. To this end, some phytocannabinoids isolated from (widely known as marijuana) have attracted significant attention as potential neurotherapeutics.
View Article and Find Full Text PDFFlexible electronics require elastomeric and conductive biointerfaces with native tissue-like mechanical properties. The conventional approaches to engineer such a biointerface often utilize conductive nanomaterials in combination with polymeric hydrogels that are cross-linked using toxic photoinitiators. Moreover, these systems frequently demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions.
View Article and Find Full Text PDF2D covalent organic frameworks (COFs) are an emerging class of crystalline porous organic polymers with a wide-range of potential applications. However, poor processability, aqueous instability, and low water dispersibility greatly limit their practical biomedical implementation. Herein, a new class of hydrolytically stable 2D COFs for sustained delivery of drugs to direct stem cell fate is reported.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
March 2021
Two-dimensional (2D) metal organic frameworks (MOFs), are an emerging class of layered nanomaterials with well-defined structure and modular composition. The unique pore structure, high flexibility, tunability, and ability to introduce desired functionality within the structural framework, have led to potential use of MOFs in biomedical applications. This article critically reviews the application of 2D MOFs for therapeutic delivery, tissue engineering, bioimaging, and biosensing.
View Article and Find Full Text PDFLimited tumor tissue penetration is one of the key impeding factors retarding successful in vivo exploitations of anti-angiogenic cancer therapy. Herein we report on the design of a cell penetrating peptide-decorated lipid nano-assembly which, upon systemic administration, induces significant mouse tumor growth inhibition via enhanced tumor infiltration of encapsulated anti-angiogenic siRNA.
View Article and Find Full Text PDFDespite significant progress in neurosurgery and radiation therapy during the past decade, overall survivability (OS) of glioblastoma patients continues to be less than 2 years. The scope of systemic chemotherapy is greatly limited by poor drug transport across the blood brain barrier (BBB) and, thereby, suboptimal drug accumulation in glioma tissue. To this end, use of large amino acid transporter-1 (LAT1) overexpressed both on brain capillary endothelial cells (BCECs) and glioma cells has begun.
View Article and Find Full Text PDFDespite significant recent progress in the area of translational genomics of neuroblastoma, the overall survival rates for children with high-risk NB continue to be not more than 5 years due to tumor relapse and/or drug-resistant tumors. Herein we report on the development of a neuroblastoma targeting nanometric (130-150 nm) circulation stable liposomal system prepared from a novel nipecotic acid-derived cationic amphiphile (NACA). The size ranges of liposomes (130-150 nm) were confirmed by both dynamic light scattering and transmission electron microscopy.
View Article and Find Full Text PDFMany cancer cells over express CDC20 (Cell Division Cycle homologue 20), a key cell cycle regulator required for the completion of mitosis in organisms from yeast to human. A recent in vitro study showed that specific knockdown of CDC20 expression using CDC20siRNA can significantly inhibit growth of human pancreatic carcinoma cells. However, preclinical study aimed at demonstrating therapeutic potential of CDC20siRNA in inhibiting tumor growth has just begun.
View Article and Find Full Text PDF