Publications by authors named "Sukant Khurana"

Time series tools are part and parcel of modern day research. Their usage in the biomedical field; specifically, in neuroscience, has not been previously quantified. A quantification of trends can tell about lacunae in the current uses and point towards future uses.

View Article and Find Full Text PDF

After human genome sequencing and rapid changes in genome sequencing methods, we have entered into the era of rapidly accumulating genome-sequencing data. This has derived the development of several types of methods for representing results of genome sequencing data. Circular genome visual-ization tools are also critical in this area as they provide rapid interpretation and simple visualization of overall data.

View Article and Find Full Text PDF

Not much is known about disease prevalence, treatment outcomes, trained manpower, programs, and patients' awareness of diseases from South Asia, compared with the Western world. While other aspects are improving, the quantitative evaluation of awareness of diseases is lagging. Compared with other diseases, the situation for mental health disorders and addiction is worse.

View Article and Find Full Text PDF

Heat shock protein 47 kDa (HSP47) serves as a client-specific chaperone, essential for collagen biosynthesis and its folding and structural assembly. To date, there is no comprehensive study on mutational hotspots. Using five different human mutational databases, we deduced a comprehensive list of human HSP47 mutations with 24, 67, 50, 43 and 2 deleterious mutations from the 1000 genomes data, gnomAD, COSMICv86, cBioPortal, and CanVar, respectively.

View Article and Find Full Text PDF

Maintenance of oral health is a major challenge in dentistry. Different materials have been used to treat various dental diseases, although treatment success is limited by features of the biomaterials used. To overcome these limitations, materials incorporated with nanoparticles (NPs) can be used in dental applications including endodontics, periodontics, tissue engineering, oral surgery, and imaging.

View Article and Find Full Text PDF

Wnts and the components of Wnt/β-catenin signaling are widely expressed in midbrain and required to control the fate specification of dopaminergic (DAergic) neurons, a neuronal population that specifically degenerate in Parkinson's disease (PD). Accumulating evidence suggest that mitochondrial dysfunction plays a key role in pathogenesis of PD. Axin-2, a negative regulator of Wnt/β-catenin signaling affects mitochondrial biogenesis and death/birth of new DAergic neurons is not fully explored.

View Article and Find Full Text PDF

We propose a new approach, Bayesian Probability of Association (BPA) which takes into account the probability distributions of information and noise in the variables and uses Bayesian statistics to predict associations better than existing approaches. Our approach overcomes the limitations of linearity of the relationship and normality of the data, assumed by the Pearson correlation coefficient. It is different from the current measures of association because considering information separately from noise helps identify the association in information more accurately, makes the approach less sensitive to noise and also helps identify causal directions.

View Article and Find Full Text PDF

Phytomedicine has often been used as "alternative therapy," which in our opinion is unfortunate as it prevents its main actions being systematically studied, side effects explored, and toxicity tested, like all single-compound-based medicine. Our group is interested in finding which traditional or modern phytomedicines actually work and which are simply "working" through placebo, standardizing phytomedicine preparations, studying their toxicity, and finding active molecules in plants for modification and chemical synthesis as single compounds. Although fluctuation in efficacy due to seasonal and geographical variations in phytomedicine remains a concern, if well regulated, even plant extracts without isolated compounds can serve medicinal needs where single-compound options are currently not great.

View Article and Find Full Text PDF

Parkinson's disease remains as one of the most common debilitating neurodegenerative disorders. With the hopes of finding agents that can cure or reduce the pace of progression of the disease, we studied two traditional medicinal plants: Centella asiatica and Withania somnifera that have been explored in some recent studies. In agreement with the previous work on ethanol extracts of these two plants in mice model, we saw an improvement in oxidative stress profile as well as behavioral performance in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced Parkinson-like symptoms in Balb/c mice.

View Article and Find Full Text PDF

Parkinson's disease is one of the most common neurodegenerative diseases. Animal models have contributed a large part to our understanding and therapeutics developed for treatment of PD. There are several more exhaustive reviews of literature that provide the initiated insights into the specific models; however a novel synthesis of the basic advantages and disadvantages of different models is much needed.

View Article and Find Full Text PDF
Article Synopsis
  • Gelling agents are essential for creating solid and semisolid media to isolate microorganisms, with agar being favored over gelatin due to its superior properties.
  • Challenges like source depletion and difficulties with certain microorganisms have led to the development of alternative gelling agents such as xantham gum, gellan gum, and guar gum.
  • The ongoing research and progress in gelling agent development aim to enhance the cultivation of previously hard-to-culture microorganisms and support future research in microbiology.
View Article and Find Full Text PDF

Many insects, including Drosophila melanogaster, have a rich repertoire of olfactory behavior. Combination of robust behavioral assays, physiological and molecular tools render D. melanogaster as highly suitable system for olfactory studies.

View Article and Find Full Text PDF

Microbial media has undergone several changes since its inception but some key challenges remain. In recent years, there has been exploration of several alternative nutrient sources, both to cater to the specificity in requirement of growth of "fussy microorganisms" and also to reduce costs for large-scale fermentation that is required for biotechnology. Our mini-review explores these developments and also points at lacunas in the present areas of exploration, such as a lack of concerted effort in pH and osmolarity regulation.

View Article and Find Full Text PDF

With increasing use of various techniques to record optically and electrophysiologically from awake behaving animals and the growing developments of brain-machine interfaces, one might wonder if the use of acute-slice physiology is on its deathbed. Have we actually arrived at a stage where we can abandon the use of acute slices, with most of the information about brain functions coming from in vivo experiments? We do not believe that this is the case, given that our understanding of the nuts and bolts of the nervous system, such as ion channels and transporters in near-native state, neuronal compartmentalization, and single-neuron computation, is far from complete. We believe that in the foreseeable future, questions in these fields will still be best addressed by acute-slice physiology.

View Article and Find Full Text PDF

Alcohol addiction is a disease that includes a diverse set of phenotypes. Functional alcohol tolerance is an adaptation to the effects of alcohol that restores neuronal homeostatic balance while the drug is present. When the drug is suddenly withheld, these adaptations unbalance the nervous system and are thought to be the origin of some withdrawal symptoms.

View Article and Find Full Text PDF

We studied complete dose-response curves for 53 odorants in the third instar larvae of Drosophila melanogaster. All odorants, except one, elicited an attraction response. Some odorants also elicited a decrease from their peak response at higher concentrations.

View Article and Find Full Text PDF

Physiological alcohol dependence is a key adaptation to chronic ethanol consumption that underlies withdrawal symptoms, is thought to directly contribute to alcohol addiction behaviors, and is associated with cognitive problems such as deficits in learning and memory. Based on the idea that an ethanol-adapted (dependent) animal will perform better in a learning assay than an animal experiencing ethanol withdrawal will, we have used a learning paradigm to detect physiological ethanol dependence in Drosophila. Moderate ethanol consumption initially degrades the capacity of larvae to learn, but they eventually adapt and are able to learn as well as ethanol-naive animals.

View Article and Find Full Text PDF

Oxidative damage caused by free radicals plays an important role in the causation and progression of many diseases, including aging. Free-radical damage is countered by many mechanisms, including both active antioxidant enzymatic activity in our body and passive antioxidants. Antioxidant response of our body can accommodate increased oxidative damage in diseased states to a level but beyond that level, additional antioxidants are required to combat the increased stress.

View Article and Find Full Text PDF

Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied.

View Article and Find Full Text PDF

In sensory circuits of the brain, developmental changes in the expression and modulation of voltage-gated ion channels are a common occurrence, but such changes are often difficult to assign to clear functional roles. We have explored this issue in the binaural neurons of the medial superior olive (MSO), whose temporal precision in detecting the coincidence of binaural inputs dictates the resolution of azimuthal sound localization. We show that in MSO principal neurons of gerbils during the first week of hearing, a hyperpolarization-activated current (I(h)) progressively undergoes a 13-fold increase in maximal conductance, a >10-fold acceleration of kinetics, and, most surprisingly, a 30 mV depolarizing shift in the voltage dependence of activation.

View Article and Find Full Text PDF

Adult Drosophila melanogaster has long been a popular model for learning and memory studies. Now the larval stage of the fruit fly is also being used in an increasing number of classical conditioning studies. In this study, we employed heat shock as a novel negative reinforcement for larvae and obtained high learning scores following just one training trial.

View Article and Find Full Text PDF

In neurons of the medial superior olive (MSO), voltage-gated ion channels control the submillisecond time resolution of binaural coincidence detection, but little is known about their interplay during trains of synaptic activity that would be experienced during auditory stimuli. Here, using modeling and patch-clamp recordings from MSO principal neurons in gerbil brainstem slices, we examined interactions between two major currents controlling subthreshold synaptic integration: a low-voltage-activated potassium current (I(K-LVA)) and a hyperpolarization-activated cation current (I(h)). Both I(h) and I(K-LVA) contributed strongly to the resting membrane conductance and, during trains of simulated EPSPs, exhibited cumulative deactivation and inactivation, respectively.

View Article and Find Full Text PDF

Drosophila melanogaster larvae are model systems for studies of development, synaptic transmission, sensory physiology, locomotion, drug discovery, and learning and memory. A detailed behavioral understanding of larvae can advance all these fields of neuroscience. Automated tracking can expand fine-grained behavioral analysis, yet its full potential remains to be implemented for the larvae.

View Article and Find Full Text PDF

Drosophila larvae can be trained to avoid odours associated with electric shock. We describe here, an improved method of aversive conditioning and a procedure for decomposing learning retention curve that enables us to do a quantitative analysis of memory phases, short term (STM), middle term (MTM) and long term (LTM) as a function of training cycles. The same method of analysis when applied to learning mutants dunce, amnesiac, rutabaga and radish reveals memory deficits characteristic of the mutant strains.

View Article and Find Full Text PDF