Publications by authors named "Suk-Won Choi"

A novel fluorescent i-motif DNA silver nanoclusters system has been developed for visualization of reactive oxygen species in plants, enabling the detection of intracellular signaling in plant cells. Reactive oxygen species (ROS) are crucial in plant growth, defense, and stress responses, making them vital for improving crop resilience. Various ROS sensing methods for plants have been developed to detect ROS in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Circularly polarized light emission (CPLE) materials are gaining interest for applications in areas like spintronics.
  • The study demonstrates a new method for activating CPLE in achiral luminogens by utilizing phase separation with helical filaments, which enhances their properties.
  • The chiral environment created by nanoscale spaces allows the helical filaments to impart chirality to the otherwise CPLE-inactive luminogens, making this approach a simpler alternative to complex chemical synthesis.
View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is a widespread type of sustained arrhythmia that poses significant health risks. Catheter ablation is the preferred treatment; however, arrhythmia recurrence remains challenging. Sodium-glucose co-transporter 2 inhibitors, particularly dapagliflozin (DAPA), have exhibited cardiovascular benefits.

View Article and Find Full Text PDF

There has been extensive research on electrospun ferroelectric nanoparticle-doped poly L-lactic acid (PLA) nanofiber web piezoelectric devices. In this study, BaTiO nanoparticles (BTNPs) were incorporated into the PLA to enhance the piezoelectric properties. The composite nanofiber webs were characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction.

View Article and Find Full Text PDF

This study proposes the use of physical unclonable functions employing circularly polarized light emission (CPLE) from nematic liquid crystal (NLC) ordering directed by helical nanofilaments in a mixed system composed of a calamitic NLC mixture and a bent-core molecule. To achieve this, an intrinsically nonemissive NLC is blended with a high concentration of a luminescent rod-like dye, which is miscible up to 10 wt % in the calamitic NLC without a significant decrease in the degree of alignment. The luminescence dissymmetry factor of CPLEs in the mixed system strongly depends on the degree of alignment of the dye-doped NLCs.

View Article and Find Full Text PDF

Chiral perovskites have garnered significant attention, owing to their chiroptical properties and emerging applications. Current fabrication methods often involve complex chemical synthesis routes. Herein, an alternative approach for introducing chirality into nonchiral hybrid organic-inorganic perovskites (HOIPs) using nanotemplates composed of cholesteric polymeric networks is proposed.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs).

View Article and Find Full Text PDF

Two types of binary mixtures were prepared. One consisted of a calamitic nematogen and bent-core molecule with a helical nanofilament, whereas the other contained a calamitic nematogen and bent-core molecule with a dark conglomerate. The chiroptical features of these two mixtures were investigated using polarized optical microscopy and circular dichroism.

View Article and Find Full Text PDF

In this paper, chiral intermediate phases composed of two achiral molecules are fabricated by utilizing nanophase separation and molecular hierarchical self-organization. An achiral bent-core guest molecule, exhibiting a calamitic nematic and a dark conglomerate phase according to the temperature, is mixed with another achiral bent-core host molecule possessing a helical nanofilament to separate the phases between them. Two nanosegregated phases are identified, and considerable chiroptical changes, such as circular dichroism and circularly polarized luminescence, are detected at the transition temperatures between the different nanophase-separated states.

View Article and Find Full Text PDF
Article Synopsis
  • A binary mixture of an achiral bent-core molecule and a bent-core base main-chain polymer creates a unique nanosegregated phase resulting from phase separation of the helical nanofilament B4 phase and the dark conglomerate phase.
  • The nanosegregated phase was analyzed using various methods including polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction, revealing growth of enantiomeric domains and significant circular dichroism.
  • The structural chirality of the helical nanofilament B4 phase influences the conformation of the bent-core base main-chain polymer within the nanofilament networks.
View Article and Find Full Text PDF

Phosphorylation can quickly switch on/off protein functions. Here, we reported pre-mRNA processing 4 kinase A (PRP4KA), and its paralogs interact with Serrate (SE), a key factor in RNA processing. PRP4KA phosphorylates at least five residues of SE in vitro and in vivo.

View Article and Find Full Text PDF

The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization.

View Article and Find Full Text PDF

Micro-sized segregated liquid crystals (MSLCs) surrounded by a polymer medium can be used for haze film applications. When incident light passes through the MSLC film, the microsized particles act as light scattering centers. In this study, the results of the addition of a multi-functional acrylate to a commercial thiol-ene prepolymer system, as well as the morphology of (LC) droplets, fractal dimension (), and the optical haze performance of the micro-sized segregated LCs formed by UV-initiated photopolymerization, are reported.

View Article and Find Full Text PDF

In this paper, a simple and powerful method to control the induced handedness of helical nanofilaments (HNFs) is presented. The nanofilaments are formed by achiral bent-core liquid crystal molecules employing a cholesteric liquid crystal field obtained by doping a rod-like nematogen with a chiral dopant. Homochiral helical nanofilaments are formed in the nanophase-separated helical nanofilament/cholesteric phase from a mixture with a cholesteric phase.

View Article and Find Full Text PDF

Objective: To examine the features of powered mobility device-related injuries and identify the predictors of injury severity in such settings.

Methods: Emergency Department-based Injury In-depth Surveillance data from 2011 to 2018 were used in this retrospective study. Participants were assigned to the mild/moderate and severe groups based on their excess mortality ratio-adjusted injury severity score and their general injury-related factors and injury outcome-related factors were compared.

View Article and Find Full Text PDF

The precise regulation of microRNA (miRNA) biogenesis is crucial for plant development, which requires core microprocessors and many fine tuners to coordinate their miRNA processing activity/specificity in fluctuating cellular environments. During de-etiolation, light triggers a dramatic accumulation of core microprocessors and primary miRNAs (pri-miRNAs) but decreases pri-miRNA processing activity, resulting in relatively constant miRNA levels. The mechanisms underlying these seemingly contradictory regulatory changes remain unclear.

View Article and Find Full Text PDF

In this study, a polymerized twisted nematic (TN) network was used as an extrinsic chiral platform to overcome the heterogeneity during spontaneous symmetry breaking in a mixed system comprising an achiral bent-core molecule and rod-like mesogen. The TN platform was prepared by photopolymerizing a reactive mesogen dispersed in a low molecular weight liquid crystal with TN orientation. The use of TN orientation to correct the degeneracy in bent-core molecular systems has been previously reported; however, to the best of our knowledge, this is the first study that uses an extrinsic chiral platform of a polymerized TN network.

View Article and Find Full Text PDF

Strontium (Sr) is an emerging environmental pollutant that has become a major global concern after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in 2011. Although many studies have demonstrated the harmful effects of Sr on plant growth and development at the physiological level, knowledge regarding how plants sense and respond to Sr stress at the molecular level is limited. Recent studies have suggested that microRNAs (miRNAs) function as key regulators of plant growth and development as well as in the responses of plants to environmental stresses, including salinity, drought, cold, nutrient starvation, and heavy metals.

View Article and Find Full Text PDF

Introduction: Leg muscle strength (LMS) may be useful as a frailty index in patients with heart failure. However, LMS, until recently, has been indirectly estimated, and its prognostic value in acute heart failure syndrome (AHFS) is unclear. Therefore, we evaluated the prognostic value of direct LMS assessment and its relationship with proinflammatory mediators in patients with AHFS.

View Article and Find Full Text PDF

Herein, an epoch-making method based on bottom-up templating is proposed for the fabrication of a chiral nanoporous film that provides a chiral environment in which to confine nematic liquid crystals. A helical nanofilamental network of bent-core molecules was utilized as a three-dimensional mold, and thus the fabricated chiral nanoporous film has an inverse nanohelical structure. The presence of a chiral superstructure was confirmed by the observation of circular dichroism signals.

View Article and Find Full Text PDF

The shift of dark-grown seedlings into light causes enormous transcriptome changes followed by a dramatic developmental transition. Here, we show that microRNA (miRNA) biogenesis also undergoes regulatory changes during de-etiolation. Etiolated seedlings maintain low levels of primary miRNAs (pri-miRNAs) and miRNA processing core proteins, such as Dicer-like 1, SERRATE, and HYPONASTIC LEAVES 1, whereas during de-etiolation both pri-miRNAs and the processing components accumulate to high levels.

View Article and Find Full Text PDF

A liquid crystal laser using a polymer-stabilized simple cubic blue phase (BPII) platform has been scarcely reported because the polymer stabilization of a BPII is relatively difficult compared to that of a body-centered-cubic BP (BPI). In this study, we succeeded in fabricating a dye-doped polymer-stabilized BPII laser with wide operating-temperature ranges over 15 °C including room temperature. A narrow and sharp single laser peak with a full width at half maximum of approximately 2 nm was derived from the photonic band edge effect of the BPII-distributed feedback optical resonator.

View Article and Find Full Text PDF

Recent animal studies showed T cells have a direct pathogenic role in the development of heart failure (HF). However, which subsets of T cells contribute to human HF pathogenesis and progression remains unclear. We characterized immunologic properties of various subsets of T cells and their clinical implications in human HF.

View Article and Find Full Text PDF

Background: Cancer treatment increases the risk of cardiovascular (CV) events. However, the long-term CV outcome of breast cancer patients who undergo radiotherapy and chemotherapy concomitantly is unknown. This study aimed to determine the incidence and risk factors of CV events among these patients.

View Article and Find Full Text PDF

Herein, a novel strategy to fabricate haze films employing liquid crystal (LC) technology for photovoltaic (PV) applications is reported. We fabricated a high optical haze film composed of low-molecular LCs and polymer and applied the film to improve the energy conversion efficiency of PV module. The technique utilized to fabricate our haze film is based on spontaneous polymerization-induced phase separation between LCs and polymers.

View Article and Find Full Text PDF