Publications by authors named "Suk Won Cha"

The present study investigates the impact of sputtering configurations on the microstructure and crystallinity of thin-film yttria-stabilized zirconia electrolytes for anodized aluminum oxide-supported all-sputtered thin-film reversible solid oxide cells. Employing various sputtering parameters, such as target-substrate distance and substrate rotation speed, the present study reveals distinct surface characteristics and crystalline structures of thin-film yttria-stabilized zirconia. The microstructure analysis includes scanning electron microscopy and atomic force microscopy examinations, uncovering the influence of the process parameters on the surface morphology, roughness, and grain size.

View Article and Find Full Text PDF

To overcome significantly sluggish oxygen-ion conduction in the electrolytes of low-temperature solid-oxide fuel cells (SOFCs), numerous researchers have devoted considerable effort to fabricating the electrolytes as thin as possible. However, thickness is not the only factor that affects the electrolyte performance; roughness, grain size, and internal film stress also play a role. In this study, yttria-stabilized zirconia (YSZ) was deposited via a reactive sputtering process to fabricate high-performance thin-film electrolytes.

View Article and Find Full Text PDF

The optimum composition ratio of the anode cermet (Ni-GDC) for solid oxide fuel cells (SOFCs) varies because the electron-collecting mechanism is different depending on its applications. A Co-sputtering method facilitates ratio control with sputtering power adjustment. However, there is a practical issue with fabricating anode cermet with various ratios attributed to the large sputtering yield gap of the metal target, Ni, and the ceramic target, gadolinia-doped ceria (GDC).

View Article and Find Full Text PDF
Article Synopsis
  • - Perovskite oxides with dispersed nanoparticles are vital for energy conversion and catalysis, and redox exsolution offers a way to create nanostructures directly on these oxide supports through reduction methods.
  • - A novel method using plasma exposure has been developed for nucleating nanoparticles on perovskite, which outperforms traditional hydrogen reduction by producing over ten times more nickel nanoparticles from lanthanum titanate.
  • - Unlike electrochemical methods, plasma does not need a specialized cell setup and can be used on various materials, additionally, nitrogen plasma helps remove oxygen from the lattice, creating important chemical intermediates that enhance its effectiveness.
View Article and Find Full Text PDF

Platinum (Pt) and ruthenium (Ru) were sputtered on an electrolyte membrane and it was used as a membrane-electrode assembly for passive direct methanol fuel cells (DMFCs) operating with high concentration methanol solution (4 M). Thick (Pt of 300 nm and Ru of 150 nm) and thin (Pt of 150 nm and Ru of 75 nm) sputtered catalysts were prepared and their performance was first evaluated to find out the best sputtering conditions showing higher performance. Subsequently, four electrolyte membranes with different surface roughness were prepared to investigate its influence on the performance.

View Article and Find Full Text PDF

Rare earth phosphates have been used extensively in luminescent phosphors, bio-imaging, catalysis, and sensors. However, there is a need to correlate the structural-chemical changes associated with stability and performance. In the present work, hydrothermally synthesized CePO:Sm (x = 0, 5 and 10 mol%) nanorods were annealed at different temperatures to understand the modulations in structure as well as optical and enzyme mimetic properties.

View Article and Find Full Text PDF

Due to the poor chemical stability of CeO-based materials, doped CeO electrolytes are generally used as a stabilized ZrO protection layer/doped CeO electrolyte bilayer structure. Since the ionic conductivity of stabilized ZrO materials is lower than that of doped CeO materials, the thickness of the ZrO protective layer needs to be optimized. Thus, in this study, nano-porous anodic aluminum oxide template based scandia stabilized zirconia (ScSZ)/gadolinia doped ceria (GDC) bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) are successfully fabricated and investigated.

View Article and Find Full Text PDF

Yttria-stabilized zirconia (YSZ) thin film electrolyte deposited by plasma enhanced atomic layer deposition (PEALD) was investigated. PEALD YSZ-based bi-layered thin film electrolyte was employed for thin film solid oxide fuel cells on nanoporous anodic aluminum oxide substrates, whose electrochemical performance was compared to the cell with sputtered YSZ-based electrolyte. The cell with PEALD YSZ electrolyte showed higher open circuit voltage (OCV) of 1.

View Article and Find Full Text PDF

We investigated the effects of the insertion of a gadolinium-doped ceria (GDC) anodic functional layer (AFL) on the electrochemical performance of intermediate-temperature solid-oxide fuel cells (SOFCs). Fully stabilized yttria-stabilized zirconia (YSZ) was used as an oxygen-ion-conducting and support material. Nickel-Samaria-doped ceriathin film was used as an anode material, while screen-printed lanthanum strontium magnetite served as a cathode material.

View Article and Find Full Text PDF

Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C.

View Article and Find Full Text PDF

The effects of a post-annealing treatment on the performance of low-temperature solid oxide fuel cells (LT-SOFCs) were investigated. Nickel oxide-samarium doped ceria (NiO-SDC) anodes and yttria stabilized zirconia (YSZ) electrolytes were deposited on anodized aluminum oxide (AAO) membranes by RF sputtering and DC reactive sputtering, respectively. The half-cell of YSZ/NiO-SDC was then heat-treated at 600 degrees C for 10 h, and a porous platinum (Pt) cathode was deposited on the annealed YSZ/NiO-SDC structure by DC magnetron sputtering.

View Article and Find Full Text PDF

Nanoscale yttria-stabilized zirconia (YSZ) electrolyte film was deposited by plasma-enhanced atomic layer deposition (PEALD) on a porous anodic aluminum oxide supporting substrate for solid oxide fuel cells. The minimum thickness of PEALD-YSZ electrolyte required for a consistently high open circuit voltage of 1.17 V at 500 °C is 70 nm, which is much thinner than the reported thickness of 180 nm using nonplasmatic ALD and is also the thinnest attainable value reported in the literatures on a porous supporting substrate.

View Article and Find Full Text PDF

Triple phase boundaries (TPBs) where electrode, electrolyte, and reactant meet altogether were augmented in thin film solid oxide fuel cell when Pt cathode was deposited on yttrium-doped barium zirconate electrolyte (BZY) via sputter. The augmented TPBs were observed to exist as three-dimensional structures, which is different from what are known to exist as two-dimensional planes or interfaces, by using energy dispersive spectroscopy (EDS). The permeating phenomenon of sputtered Pt into BZY was found to depend on dc sputtering power.

View Article and Find Full Text PDF

Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively.

View Article and Find Full Text PDF