Ternary oxide nanoparticles have attracted much interest because of their intriguing properties, which are not exhibited by binary oxide nanoparticles. However, the synthesis of ternary oxide nanoparticles is not trivial and requires a fundamental understanding of the complicated precursor chemistry that governs the formation mechanism. Herein, we investigate the role of the chemical composition of precursors in the formation of ternary oxide nanoparticles via a combination of mass spectrometry, electron microscopy with elemental mapping, and thermogravimetric analysis.
View Article and Find Full Text PDFFree radical-initiated peptide sequencing mass spectrometry (FRIPS MS) was employed to analyze a number of representative singly or doubly protonated phosphopeptides (phosphoserine and phosphotyrosine peptides) in positive ion mode. In contrast to collision-activated dissociation (CAD) results, a loss of a phosphate group occurred to a limited degree for both phosphoserine and phosphotyrosine peptides, and thus, localization of a phosphorylated site was readily achieved. Considering that FRIPS MS supplies a substantial amount of collisional energy to peptides, this result was quite unexpected because a labile phosphate group was conserved.
View Article and Find Full Text PDF