Cotton is one of the oldest and most widely used natural fibers in the world. It enables a wide range of applications due to its excellent moisture absorption, thermal insulation, heat resistance, and durability. Benefiting from current developments in textile technology and materials science, people are constantly seeking more comfortable, more beautiful and more versatile cotton fabrics.
View Article and Find Full Text PDFRobust, hydrophobic woven cotton fabrics were obtained through the sol-gel dip coating of two different nanoparticle (NP) architectures; silica and silica-ZnO. Water repellency values as high as 148° and relatively low tilt angles for fibrous fabrics (12°) were observed, without the need for fluorinated components. In all cases, this enhanced functionality was achieved with the broad retention of water vapor permeability characteristics, , less than 10% decrease.
View Article and Find Full Text PDFSymmetrical azobenzene derivatives with two catechol groups, 1d-4d, were synthesized as kinds of novel compounds, and the structures were confirmed using mass spectrometry and nuclear magnetic resonance spectroscopy. These compounds could attain photostationary state rapidly in solution upon UV irradiation, and their photochromism had good reversibility. Substituents and their positions on azobenzene chromophore had obvious influence on the maximum absorption and photochromic performances of these as-synthesized compounds.
View Article and Find Full Text PDFInspired by the application of dopamine as an "anchor" and UV absorber, novel sustainable colorants with biscatecholic structure were synthesized through a simple incorporation of simple azo chromophores with dopamine. Their structures were confirmed using MS and NMR analyses, and their application on textile materials was investigated. Compared to the simple azo chromophores with almost no coloring ability on fabrics, the biscatecholic colorants could color different fabrics effectively, mainly through self-polymerization only in the presence of a trace amount of organic base at room temperature, which is environmentally friendly in terms of saving resources and alleviating chemical pollution.
View Article and Find Full Text PDFMagnetic polydopamine (PDA) nanocomposites were prepared with a facile and sustainable synthetic method. The as-synthesized polymer-based hybrid composites inherited the intrinsic adhesiveness contributed by catechol and amino moieties of PDA as well as the magnetic property of FeO. With the unique properties of PDA, the surface charges of FeO@PDA could be easily tuned by pH for smart adsorption-desorption behaviors.
View Article and Find Full Text PDF