Presently available long-acting reversible female contraceptive implants are said to be an effective way of preventing unintended pregnancy. Unacceptable side effects attributed by these contraceptive implants act as a major drawback for the practitioners. These problems pave the way for the development of a new form of long-acting non-hormonal female contraceptive implant, especially in the developing countries.
View Article and Find Full Text PDFBackground & Objectives: For improved male contraception, a new polymeric drug molecule - Reversible Inhibition of Sperm under Guidance (RISUG) has been synthesized and has been found to be effective, safe and reversible in various animal species. Phase-I and phase-II clinical trials have confirmed its safety and contraceptive efficacy. The present study was undertaken as a multicentric-limited phase-III clinical trial to test the efficacy and safety of RISUG in human volunteers.
View Article and Find Full Text PDFIntrauterine Contraceptive Devices with multifaceted application potential is a need of an hour. Although, copper-based IUDs exert an effective contraceptive as well as anticancer effects in a long-term basis, but also results in multiple complications. In this regard, RISUG a polymer based contraceptive device has been introduced as a suitable alternative.
View Article and Find Full Text PDFMajority of the commercially available vaginal contraceptives encompasses cervicovaginal membrane disrupting detergent molecules as pharmacologically active ingredients. Development of a tissue-compatible vaginal contraceptive agent is necessary to circumvent the existing demand for female contraception in the reproductive healthcare sector. With this objective, the present study delineates the use of RISUG based non-hormonal female contraceptive films.
View Article and Find Full Text PDFDevelopment of non-hormonal female contraception is a need to combat against increasing population growth. The presently available short term or long term female contraceptives and sterilization methods have their own restrictions and side effects. With this objective, herein, we describe an innovative insight about the use of hydrogel formulation consisting of Styrene Maleic Anhydride (SMA) dissolved in Dimethyl Sulfoxide (DMSO) as non-hormonal fallopian tube contraceptive implant.
View Article and Find Full Text PDFNanomaterial mediated drug delivery represents a highly promising technique while its selectivity for reproductive healthcare application still remains a challenge. Since the delicate structure and functional role of reproductive tissue and gametes require the use of biocompatible nanomedicine/devices that do not affect fertility or the development of resulting offspring, this paper reports an intercomparative study of human spermatozoa interaction with three different nanoparticles (NPs) namely; iron oxide (Fe3O4), multiwalled carbon nanotubes (MWCNT) and graphene platelet nanopowder (GPN) to probe their suitability for drug delivery carrier and biomarker development purposes. ATR-FTIR results revealed that the sperm cell interaction with GPN had maximum amide I absorption for cell proteins and CO stretching of the peptide backbone at the band around 1657 cm(-1) followed by iron oxide NPs whereas MWCNT had no absorption.
View Article and Find Full Text PDFAmong the various applications of nano-biotechnology, healthcare is considered one of the most significant domains. For that possibility to synthesize various kind of nanoparticles (NPs) and the ever-increasing ability to control their size as well as structure, to improve surface characteristics and binding NPs with other desired curing agents has played an important role. In this paper, a brief sketch of various kinds of nanomaterials and their biomedical applications is given.
View Article and Find Full Text PDFpH-responsive polymers render liposomes pH-sensitive and facilitate the intracellular release of encapsulated payload by fusing with endovascular membranes under mildly acidic conditions found inside cellular endosomes. The present study reports the use of high-molecular weight poly(styrene-co-maleic acid) (SMA), which exhibits conformational transition from a charged extended structure to an uncharged globule below its pK(1) value, to confer pH-sensitive property to liposomes. The changes in the co-polymer chain conformation resulted in destabilization of the liposomes at mildly acidic pH due to vesicle fusion and/or channel formation within the membrane bilayer, and ultimately led to the release of the encapsulated cargo.
View Article and Find Full Text PDFTo understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes.
View Article and Find Full Text PDFAlthough it has been well established that spermatogenic cells undergo apoptosis when treated with ethanol, the molecular mechanisms behind it remain to be investigated. Adult male mice were given intra-peritoneal injection (IP) of ethanol at a dose of 3 g (15%, v/v) per kg body weight per day during the period of 14 days. Testicular androgenesis and apoptotic germ cell death, along with different interrelated proteins expression, were evaluated.
View Article and Find Full Text PDFUnder guidance of an external pulsed magnetic field the Cuproferrogel iron oxide-copper-styrene maleic anhydride-dimethyl sulphoxide delivered into the rat/rabbit oviduct resulted in oocytes with granulated cytoplasm, zona enlargement, membrane disintegration, and finally loss of viability in 72 hours. Also, the percentage biodistribution of magnetic and electrically conductive particles observed under safe level advocates the use of Cuproferrogel as a potential female fertility control molecule.
View Article and Find Full Text PDFThe rationale and technique underlying a novel concept of noninvasive fertility control by a new Cuproferrogel contraceptive drug, iron oxide-copper-styrene maleic anhydride-dimethyl sulphoxide (Fe3O4-Cu-SMA-DMSO) composite named 'Smart RISUG' (smart reversible inhibition of sperm under guidance) in presence of pulsed magnetic field (PMF; 1 mT to 800 mT) is explained. It was synthesized by dispersing iron oxide particles and copper particles into SMA-DMSO (male contraceptive RISUG) and characterized for particle distribution, particle size measurement and transmittance peaks, etc. Interaction of the RISUG particles as well as Smart RISUG particles with Albino rat sperm cell was studied in presence as well as absence of PMF.
View Article and Find Full Text PDFEntry inhibitors are a group of antiretroviral drug which prevents HIV from entering human immune cells. They include both fusion and attachment inhibitors. A hypothesis is put forward in which a new male contraceptive drug with proven antimicrobial property is proposed as a possible candidate for the entry inhibitor group of antiretroviral drugs.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2009
RISUG a polyelectrolytic hydrogel (styrene maleic anhydride and dimethyl sulfoxide) has proven to be efficacious as a contraceptive for a long term when injected into the lumen of vas deferens. Currently it is in advanced phase III clinical trials in India. Present investigation analyzes the swelling characteristics of RISUG hydrogel in different pH buffers and various biological fluids to understand its retention in the vas deferens as reported in previous studies.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2008
A new male contraceptive given the name RISUG (an acronym for reversible inhibition of sperm under guidance) and presently undergoing advanced clinical trials has been developed. When injected into the lumen of the vas deferens, its polyelectrolytic nature induces a surface charge imbalance on sperm membrane system leading to the leakage of enzymes essential for fertilization. Contact mode atomic force microscopy (AFM) has been used to analyze quantitatively the micro-structural properties of RISUG and its precipitate in various systems.
View Article and Find Full Text PDFA new male contraceptive given the name RISUG (an acronym for Reversible Inhibition of Sperm Under Guidance) has been developed by our research group. RISUG is a bioactive polymer and is injected into the lumen of the vas deferens using a no-scalpel approach. The polyelectrolytic nature of this contraceptive induces a surface charge imbalance on sperm membrane system leading to its destabilization.
View Article and Find Full Text PDFAim: To determine the short and long-term morphological effects on sperm as induced by intra-vas alteration of pH and electrical charge.
Methods: Desired biophysical influences were obtained by injection of reversible inhibition of sperm under guidance (RISUG) into the lumen of the vas deferens of human subjects and the monkey. RISUG is a polyelectrolyte hydrogel complex of styrene maleic anhydride (SMA) and dimethyl sulfoxide (DMSO) which generates an electrostatic charge and also lowers in a near space of pH domain.
A new method of male contraception has been developed which results in long-term infertility and has the potential advantage of being reversible. The contraceptive, given the name RISUG (an acronym for Reversible Inhibition of Sperm Under Guidance) is a polyelectrolytic compound and when injected into the lumen of the vas deferens, induces a surface charge imbalance on the sperm membrane system leading to its destabilization. In the present study, morphological and topological alterations in human spermatozoa induced by RISUG have been investigated using atomic force microscopy (AFM).
View Article and Find Full Text PDFJ Nanobiotechnology
September 2005
Atomic force microscopy (AFM) has emerged as the only technique capable of real-time imaging of the surface of a living cell at nano-resolution. Since AFM provides the advantage of directly observing living biological cells in their native environment, this technique has found many applications in pharmacology, biotechnology, microbiology, structural and molecular biology, genetics and other biology-related fields. AFM has also proved to be a valuable tool for reproductive biologists.
View Article and Find Full Text PDFHIV transmission from the male to the female is a major health problem. A hypothesis proposing an intra vas deferens implant of an antimicrobial compound to prevent the infection spread is presented. Mechanisms of action for the inhibition could include inactivating HIV in sperms passing through the vas deferens; drug release from the implant to destroy HIV entering into semen from genital structures distal to the vas deferens; and sperm acrosome released hyaluronidase mediated reabsorption of HIV.
View Article and Find Full Text PDFEffect of RISUG, a newly developed male contraceptive, on various amino acids of seminal plasma ejaculates was studied by proton magnetic resonance spectroscopy at 400 MHz. Levels of amino acids were compared with the seminal plasma of obstructive azoospermia and controls. Glutamic acid, glutamine, and arginine were found to be high in concentration in human seminal plasma.
View Article and Find Full Text PDFAviat Space Environ Med
June 2002
Background: Blood accumulation in the lower extremities of fighter pilots has been known to induce loss of peripheral vision and consciousness. G suits and anti-G straining maneuvers applied to lower limbs do not work according to the actual status of blood accumulation. Therefore, the problem of blood accumulation in the legs requires further investigation.
View Article and Find Full Text PDF