A highly stable flow-injection amperometric sensor for dexamethasone (DEX) was developed using a pencil graphite electrode (PGE) modified with Fe-based metal organic frameworks, MIL-100(Fe) and graphene oxide composite materials (MIL-100(Fe)/GO). Scanning electron microscopy and energy-dispersive X-ray spectroscopy, transmission electron microscopy, powder X-ray diffraction, and Fourier-transform infrared spectroscopy were used to characterize the MIL-100(Fe) composites. The MIL-100(Fe)/GO-modified PGE (denoted MIL-100(Fe)/GO/PGE) was further electrochemically characterized using cyclic voltammetry.
View Article and Find Full Text PDFIn this study, a one-pot synthesis of a molybdenum diselenide/nitrogen-doped graphene oxide (MoSe/NGO) composite was demonstrated and used for the fabrication of an electrochemical pH sensor. The MoSe/NGO composite was characterized using powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis. The electrochemical behavior at different pH values was determined by recording the open-circuit potential.
View Article and Find Full Text PDFCoffee beans can be contaminated during roasting by polycyclic aromatic hydrocarbons (PAHs), some of which have been classified as carcinogens. An extraction device for PAHs in coffee drinks was designed with six compact DC motors rotating six sorbents. The sorbents were plaswood propellers modified by one-step electrodeposition of a poly(ortho-phenylenediamine) and Zn composite (PoPD-Zn).
View Article and Find Full Text PDFPolystyrene-based products are widely used in industrial and daily activities, but their subsequent disposal can negatively affect the environment. This work focuses on reducing polystyrene waste into useful material. A waste-derived polystyrene sorbent (WDPS) was fabricated and successfully applied to determine bisphenol-A in canned beverages.
View Article and Find Full Text PDFA gelatin aerogel tablet was used as a vortex assisted solid phase extraction (VA-SPE) sorbent for the determination of polycyclic aromatic hydrocarbons (PAHs), benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF), and benzo(a)pyrene (BaP) in tea samples. They have been quantified by a high-performance liquid chromatography with a diode array detector (HPLC-DAD). The method shows good linearity (R = 0.
View Article and Find Full Text PDFA dumbbell-shaped stir bar adsorbent of MIL-101 entrapped in PVA cryogel coated with poly(3,4-ethylenedioxythiophene) was fabricated to extract synthetic phenolic antioxidants in foodstuffs. The interconnected porous of cryogel allowed the entrapment of MIL-101 and enhanced the surface areas of poly(3,4-ethylenedioxythiophene) coating which facilitated multiple adsorptions. The fabricated adsorbent was characterized and measured the adsorption capacities for synthetic phenolic antioxidants.
View Article and Find Full Text PDFA stable and magnetic graphene oxide (GO) foam-polyethyleneimine-iron nanoparticle (GO-PEI-FeNPs) composite has been fabricated for removal of endocrine disruptors-bisphenol A, progesterone and norethisterone-from aqueous solution. The foam with porous and hierarchical structures was synthesized by reduction of graphene oxide layers coupled with co-precipitation of iron under a hydrothermal system using polyethyleneimine as a cross linker. The presence of magnetic iron nanoparticles facilitates the separation process after decontamination.
View Article and Find Full Text PDFMembranes (Basel)
September 2020
Three-dimensional (3D) reduced graphene oxide (rGO) modified by polyethyleneimine (PEI) was prepared and functionalized by fluorophore-labeled dexamethasone-aptamer (Flu-DEX-apt) via π-π stacking interaction. The rGO/PEI/Flu-DEX-apt was used as a selective membrane for dexamethasone hormone removal from water. The prepared rGO/PEI/Flu-DEX-apt membranes were stable, insoluble, and easily removable from liquid media.
View Article and Find Full Text PDFA high specificity aptamer-ligand biorecognition and binding system to monitor of dexamethasone (DXN) was developed. The detection principle was based on a label-free electrochemical aptasensor. The selection of the aptamer was successfully performed by the systematic evolution of ligands through exponential enrichment technique (SELEX).
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
September 2017
This paper reports the development of a sensitive, high-throughput colorimetric method for the detection of trace mercuric ions (Hg). The method is based on the binding of the analyte to gold nanoparticles (AuNPs) modified with Tween-20. Tween-20 was used as a nonionic stabilizer to allow a good dispersion of AuNPs in solution.
View Article and Find Full Text PDFSince the emergence of microfluidic platforms sensors integration has been a major challenge. With the advances in miniaturization of these platforms, there is a need for solutions to integrate various optical components in order to build sensors, which will offer different detection characteristics such as several emission and sensing wavelengths. Moreover, the integration of an electrochemical sensor including a transparent electrode that will be compatible with the optical sensor represents an additional challenge.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
May 2013
A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated.
View Article and Find Full Text PDFA rapid and highly sensitive miniaturized amperometric biosensor for the detection of α-ketoglutarate (α-KG) based on a carbon fiber electrode (CFE) is presented. The biosensor is constructed by immobilizing the enzyme, glutamate dehydrogenase (GLUD) on the surface of single carbon fiber modified by co-deposition of ruthenium (Ru) and rhodium (Rh) nanoparticles. SEM and EDX shed useful insights into the morphology and composition of the modified microelectrode.
View Article and Find Full Text PDF