Publications by authors named "Sujit S Jagtap"

Unlabelled: Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH).

View Article and Find Full Text PDF

is an oleaginous yeast that produces high titers of fatty acid-derived biofuels and biochemicals. It can grow on hydrophobic carbon sources and lignocellulosic hydrolysates. The genome sequence of NRRL Y-64008 is reported to aid in its development as a biotechnological chassis for producing biofuels and bioproducts.

View Article and Find Full Text PDF

Methanotrophs play a significant role in methane oxidation, because they are the only biological methane sink present in nature. The methane monooxygenase enzyme oxidizes methane or ammonia into methanol or hydroxylamine, respectively. While much is known about central carbon metabolism in methanotrophs, far less is known about nitrogen metabolism.

View Article and Find Full Text PDF

is an oleaginous yeast that can utilize a variety of plant-based sugars. It accumulates lipids during growth on lignocellulosic biomass hydrolysates. We present the annotated genome sequence of NRRL Y-64009 to aid in its development as a platform organism for producing lipids and lipid-based bioproducts.

View Article and Find Full Text PDF

Oleaginous yeasts have received significant attention due to their substantial lipid storage capability. The accumulated lipids can be utilized directly or processed into various bioproducts and biofuels. Lipomyces starkeyi is an oleaginous yeast capable of using multiple plant-based sugars, such as glucose, xylose, and cellobiose.

View Article and Find Full Text PDF

The halotolerant and osmotolerant yeast Zygosaccharomyces rouxii can produce multiple volatile compounds and has the ability to grow on lignocellulosic hydrolysates. We report the annotated genome sequence of Z. rouxii NRRL Y-64007 to support its development as a platform organism for biofuel and bioproduct production.

View Article and Find Full Text PDF

Background: Sugar alcohols are widely used as low-calorie sweeteners in the food and pharmaceutical industries. They can also be transformed into platform chemicals. Yarrowia lipolytica, an oleaginous yeast, is a promising host for producing many sugar alcohols.

View Article and Find Full Text PDF

Rhodosporidium toruloides is an oleaginous yeast capable of producing a variety of biofuels and bioproducts from diverse carbon sources. Despite numerous studies showing its promise as a platform microorganism, little is known about its metabolism and physiology. In this work, we investigated the central carbon metabolism in R.

View Article and Find Full Text PDF

Simultaneous co-fermentation of glucose and xylose is a key desired trait of engineered Saccharomyces cerevisiae for efficient and rapid production of biofuels and chemicals. However, glucose strongly inhibits xylose transport by endogenous hexose transporters of S. cerevisiae.

View Article and Find Full Text PDF

Ure2 regulates nitrogen catabolite repression in Saccharomyces cerevisiae. Deletion of URE2 induces a physiological state mimicking the nitrogen starvation and autophagic responses. Previous work has shown that deletion of URE2 increases the fermentation rate of some wine-producing strains of S.

View Article and Find Full Text PDF

Biohydrogen is a clean and renewable source of energy. It can be produced by using technologies such as thermochemical, electrolysis, photoelectrochemical and biological, etc. Among these technologies, the biological method (dark fermentation) is considered more sustainable and ecofriendly.

View Article and Find Full Text PDF

Lignocellulosic biomass is an inexpensive renewable source that can be used to produce biofuels and bioproducts. The recalcitrance nature of biomass hampers polysaccharide accessibility for enzymes and microbes. Several pretreatment methods have been developed for the conversion of lignocellulosic biomass into value-added products.

View Article and Find Full Text PDF

is a red, basidiomycetes yeast that can accumulate a large amount of lipids and produce carotenoids. To better assess this non-model yeast's metabolic capabilities, we reconstructed a genome-scale model of IFO0880's metabolic network (1108) accounting for 2204 reactions, 1985 metabolites and 1108 genes. In this work, we integrated and supplemented the current knowledge with in-house generated biomass composition and experimental measurements pertaining to the organism's metabolic capabilities.

View Article and Find Full Text PDF

Background: Sugar alcohols are commonly used as low-calorie sweeteners and can serve as potential building blocks for bio-based chemicals. Previous work has shown that the oleaginous yeast IFO0880 can natively produce arabitol from xylose at relatively high titers, suggesting that it may be a useful host for sugar alcohol production. In this work, we explored whether can produce additional sugar alcohols.

View Article and Find Full Text PDF

Yarrowia lipolytica has been used to produce both citric acid and lipid-based bioproducts at high titers. In this study, we found that pH differentially affects citric acid and lipid production in Y. lipolytica W29, with citric acid production enhanced at more neutral pH's and lipid production enhanced at more acid pH's.

View Article and Find Full Text PDF

Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates.

View Article and Find Full Text PDF

The sugar alcohol D-arabitol is one of the Department of Energy's top twelve bio-based building block chemicals. In this study, we found that the oleaginous yeast Rhodosporidium toruloides IFO0880 produces D-arabitol during growth on xylose in nitrogen-rich medium. Efficient xylose utilization was a prerequisite for extracellular D-arabitol production.

View Article and Find Full Text PDF

Polysaccharide degradation by marine microbes represents one of the largest and most rapid heterotrophic transformations of organic matter in the environment. Microbes employ systems of complementary carbohydrate-specific enzymes to deconstruct algal or plant polysaccharides (glycans) into monosaccharides. Because of the high diversity of glycan substrates, the functions of these enzymes are often difficult to establish.

View Article and Find Full Text PDF

Alginate lyases are enzymes that degrade alginate through β-elimination of the glycosidic bond into smaller oligomers. We investigated the alginate lyases from Vibrio splendidus 12B01, a marine bacterioplankton species that can grow on alginate as its sole carbon source. We identified, purified, and characterized four polysaccharide lyase family 7 alginates lyases, AlyA, AlyB, AlyD, and AlyE, from V.

View Article and Find Full Text PDF

Marine microbes use alginate lyases to degrade and catabolize alginate, a major cell wall matrix polysaccharide of brown seaweeds. Microbes frequently contain multiple, apparently redundant alginate lyases, raising the question of whether these enzymes have complementary functions. We report here on the molecular cloning and functional characterization of three exo-type oligoalginate lyases (OalA, OalB, and OalC) from Vibrio splendidus 12B01 (12B01), a marine bacterioplankton species.

View Article and Find Full Text PDF

Galactitol 2-dehydrogenase (GDH) belongs to the protein subfamily of short-chain dehydrogenases/reductases and can be used to produce optically pure building blocks and for the bioconversion of bioactive compounds. An NAD(+)-dependent GDH from Rhizobium leguminosarum bv. viciae 3841 (RlGDH) was cloned and overexpressed in Escherichia coli.

View Article and Find Full Text PDF
Article Synopsis
  • - A new strain called Armillaria gemina KJS114 was identified as a producer of a specific enzyme called endo-β-1,4-glucanase (EG), which was purified and characterized for its properties.
  • - The enzyme's molecular mass was found to be around 65-66 kDa, and it functions best at a pH of 5.0 and a temperature of 60 °C, showing high efficiency when breaking down carboxymethylcellulose.
  • - The study indicates that adding this enzyme to existing commercial cellulase mixtures enhances sugar production from plant materials, suggesting its potential use in converting biomass into biofuels and chemicals.
View Article and Find Full Text PDF

A white rot fungus, identified as Armillaria gemina SKU2114 on the basis of morphological and phylogenetic analyses, was found to secrete efficient lignocellulose-degrading enzymes. The strain showed maximum endoglucanase, cellobiohydrolase, and β-glucosidase activities of 146, 34, and 15 U/mL, respectively, and also secreted xylanase, laccase, mannanase, and lignin peroxidase with activities of 1270, 0.16, 57, and 0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers enhanced the catalytic activities of lignocellulases from the fungus Armillaria gemina using optimized parameters in a jar fermenter, achieving impressive enzyme activity levels.
  • The purified xylanase from A. gemina showed the highest catalytic efficiency reported for fungal xylanases, emphasizing the significance of the study.
  • Crude xylanase was successfully immobilized on silicon oxide nanoparticles, resulting in improved stability, higher xylooligosaccharide production, and excellent retention of activity over multiple usage cycles.
View Article and Find Full Text PDF

A basidiomycetous fungus, identified as Pholiota adiposa SKU0714 on the basis of morphological and phylogenetic analyses, was found to secrete efficient lignocellulose degrading enzymes. The strain showed maximum endoglucanase, cellobiohydrolase and β-glucosidase activities of 26, 32 and 39 U/mL, respectively and also secreted xylanase, laccase, mannanase, and lignin peroxidase with activities of 1680, 0.12, 65 and 0.

View Article and Find Full Text PDF