Publications by authors named "Sujing Lin"

Microneedles (MN) technology is an emerging technology for the transdermal delivery of therapeutics. When combined with photoresponsive (PR) materials, MNs can deliver therapeutics precisely and effectively with enhanced efficacy or synergistic effects. This review systematically summarizes the therapeutic applications of PRMNs in cancer therapy, wound healing, diabetes treatment, and diagnostics.

View Article and Find Full Text PDF

Leonurus japonicus Houtt. (Motherwort) is the fresh or dried aerial part of Leonurus japonicus Houtt. (Labiaceae), which is widely used in clinical practice and daily life, used to treat gynecological diseases.

View Article and Find Full Text PDF

Polymeric microneedles (MNs) are attractive transdermal drug delivery systems because of their efficient drug delivery and minimal invasiveness. Master template fabrication is the most time-consuming and costly step in producing polymeric MNs using a micromoulding approach. Herein, this issue is addressed by modifying tattoo needle cartridges by adjusting the volume of a PDMS spacer, thus streamlining polymeric MN fabrication and significantly reducing its manufacturing cost.

View Article and Find Full Text PDF

Polymeric microneedle (MN) systems are interesting transdermal drug delivery systems because of their controlled drug delivery, tunable properties, and ease of patient self-administration. They are biocompatible and can easily and painlessly penetrate the stratum corneum, delivering their contents into the dermis where they can be adsorbed into systemic circulation. Polymeric MNs can facilitate appropriate therapeutic dosing by controlling the release kinetics of pre-loaded drugs, targeting specific tissues, or responding to changing physiological conditions.

View Article and Find Full Text PDF

Objective: To develop the dual-drug resinate complexes containing codeine and chlorpheniramine with a novel batch processing, characterize the dual-drug resinate complexes, and study its drug release behavior in vitro.

Methods: A procedure of simultaneous dual-drug loading using combination solutions composed of different proportions of codeine phosphate and chlorpheniramine maleate was performed to achieve the specific resinate, and the dual-drug loading content was determined by high-performance liquid chromatography method. The dual-drug resinate complexes were characterized by a scanning electron microscope, and the formation mechanisms were confirmed with X-ray diffraction analyses and differential scanning calorimetric analyses.

View Article and Find Full Text PDF