Publications by authors named "Sujina Mali"

SignificanceProteins are the machinery which execute essential cellular functions. However, measuring their abundance within an organism can be difficult and resource-intensive. Cells use a variety of mechanisms to control protein synthesis from mRNA, including short open reading frames (uORFs) that lie upstream of the main coding sequence.

View Article and Find Full Text PDF
Article Synopsis
  • * Specifically, the hypothetical membrane protein Hyp730 from M. luteus is upregulated during dormancy, yet its function has not been previously characterized, despite its potential role in energy-saving during stressful conditions.
  • * Extensive analysis has shown Hyp730 is a non-essential, double-pass membrane protein with a conserved structure among Actinobacteria, warranting further investigation into its role under stress.
View Article and Find Full Text PDF

We have engineered the substrate specificity of chymotrypsin to cleave after Asn by high-throughput screening of large libraries created by comprehensive remodeling of the substrate binding pocket. The engineered variant (chymotrypsiN, ChyB-Asn) demonstrated an altered substrate specificity with an expanded preference for Asn-containing substrates. We confirmed that protein engineering did not compromise the stability of the enzyme by biophysical characterization.

View Article and Find Full Text PDF

During autophagy, vesicle dynamics and cargo recruitment are driven by numerous adaptors and receptors that become tethered to the phagophore through interactions with lipidated ATG8/LC3 decorating the expanding membrane. Most currently described ATG8-binding proteins exploit a well-defined ATG8-interacting motif (AIM, or LC3-interacting region [LIR]) that contacts a hydrophobic patch on ATG8 known as the LIR/AIM docking site (LDS). Here we describe a new class of ATG8 interactors that exploit ubiquitin-interacting motif (UIM)-like sequences for high-affinity binding to an alternative ATG8 interaction site.

View Article and Find Full Text PDF

Competition assays measure differences between populations of bacteria after stress adaptation, populations of different bacteria and mutations in antibiotic resistance genes. We have developed a competition-based assay to evaluate if genes upregulated under starvation are important for bacterial survival. Stress responses are critical for survival in non-pathogenic and pathogenic bacteria alike including Mycobacterium tuberculosis, Enterococcus fecaelis, Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Dormancy is a protective state in which diverse bacteria, including , , (syphilis), and (Lyme disease), curtail metabolic activity to survive external stresses, including antibiotics. Evidence suggests dormancy consists of a continuum of interrelated states, including viable but nonculturable (VBNC) and persistence states. VBNC and persistence contribute to antibiotic tolerance, reemergence from latent infections, and even quorum sensing and biofilm formation.

View Article and Find Full Text PDF

Co-affinity purification-mass spectrometry (CoAP-MS) is a primary technology for elucidating the protein-protein interactions that form the basis of all biological processes. A critical component of CoAP-MS is the affinity purification (AP) of the bait protein, usually by immobilization of an antibody to a solid-phase resin. This Minireview discusses common resins, reagents, tagging methods, and their consideration for successful AP of tagged proteins.

View Article and Find Full Text PDF

Co-affinity purification mass spectrometry (CoAP-MS) is a highly effective method for identifying protein complexes from a biological sample and inferring important interactions, but the impact of the solid support is usually not considered in design of such experiments. Affinity purification (AP) experiments typically utilize a bait protein expressing a peptide tag such as FLAG, c-Myc, HA or V5 and high affinity antibodies to these peptide sequences to facilitate isolation of a bait protein to co-purify interacting proteins. We observed significant variability for isolation of tagged bait proteins between Protein A/G Agarose, Protein G Dynabeads, and AminoLink resins.

View Article and Find Full Text PDF

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometers are simple and robust mass spectrometers used for analysis of biologically relevant molecules in diverse fields including pathogen identification, imaging mass spectrometry, and natural products chemistry. Despite high nominal resolution and accuracy, we have observed significant variability where 30-50% of individual replicate measurements have errors in excess of 5 parts-per-million, even when using 5-point internal calibration. Increasing the number of laser shots for each spectrum did not resolve this observed variability.

View Article and Find Full Text PDF