Publications by authors named "Sujin Jose"

The structure, morphology, stoichiometry, and chemical characterization of the VCT MXene, CoMnO, and VC@CoMnO nanocomposite, prepared by using a soft template method, have been studied. The electron microscopy studies reveal that the VC@CoMnO composite incorporates mesoporous spheres of CoMnO within the 2D layered structure of MXene. The specific capacitance of the composite electrode is ∼570 F g at 1 A g, which is significantly higher than that of the sum of the individual components.

View Article and Find Full Text PDF
Article Synopsis
  • The review provides a comprehensive overview of recent advances in detecting heavy metal ion pollution, emphasizing various sensing strategies like spectrometry, electrochemical methods, and optical techniques.
  • It highlights the growing interest in fluorescent sensors due to their advantages such as high specificity, reversibility, and sensitivity, making them essential for quick detection.
  • The review also focuses on the role of nanomaterials, particularly fluorescent nanomaterials like organic dyes and quantum dots, in improving the detection and removal of heavy metal ions from water and understanding their environmental impact.
View Article and Find Full Text PDF

Cellulose is a very abundant polymer that is found in nature. Cellulose has been used as a raw material for production of biofuels for many years. However, there are multiple processing steps that are required so that cellulose can be used as a raw material for biofuel production.

View Article and Find Full Text PDF

Antimonene is an exfoliated 2D nanomaterial obtained from bulk antimony. It is a novel class of 2D material for energy storage applications. In the present work, antimonene was synthesized using a high-energy ball milling-sonochemical method.

View Article and Find Full Text PDF

Energy enthusiasts in developed countries explore sustainable and efficient pathways for accomplishing zero carbon footprint through the H economy. The major objective of the H economy review series is to bring out the status, major issues, and opportunities associated with the key components such as H production, storage, transportation, distribution, and applications in various energy sectors. Specifically, Part I discussed H production methods including the futuristic ones such as photoelectrochemical for small, medium, and large-scale applications, while Part II dealt with the challenges and developments in H storage, transportation, and distribution with national and international initiatives.

View Article and Find Full Text PDF

The present study reports the biosynthesis of silver nanoparticles (AgNPs) using Bacillus amyloliquefaciens MSR5. The cellfree supernatant of B. amyloliquefaciens acted as a stabilizing agent for the synthesis of AgNPs.

View Article and Find Full Text PDF

Quantum chemical calculations on energy and molecular structure of 2-amino-3-methyl-5-nitropyridine (2A3M5NP) have been attempted by implementing DFT/B3LYP method using 6-311G (d,p), 6-311G++ (d,p) and cc-pVTZ basis sets. The optimized geometry and the vibrational analysis for energetically most stable configuration, are carried out theoretically by using B3LYP/cc-pVTZ basis set. The computed vibrational frequencies were scaled by using scaling factors and compared with the experimental Fourier Transform Infra-Red (FTIR) solid phase spectrum in the region 4000-400 cm and FT-Raman spectrum in the region 4000-100 cm.

View Article and Find Full Text PDF

Recent advances and demands in biomedical applications drive a large amount of research to synthesize easily scalable low-density, high-strength, and wear-resistant biomaterials. The chemical inertness with low density combined with high strength makes h-BN one of the promising materials for such application. In this work, three-dimensional hexagonal boron nitride (h-BN) interconnected with boron trioxide (BO) was prepared by easily scalable and energy efficient spark plasma sintering (SPS) process.

View Article and Find Full Text PDF

In this work, we report the reduction of chromium concentration in the polluted groundwater samples from Madurai Kamaraj University area, India, where the dissolved salts in groundwater are reported as serious health hazards for its inhabitants. The water samples have intolerable amounts of total dissolved solids (TDS) and chromium is a prominent pollutant among them. Chromium reduction was achieved by treating the polluted groundwater with PANI/FeO nanocomposites synthesized by in situ polymerization method.

View Article and Find Full Text PDF

An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out.

View Article and Find Full Text PDF

Here, we report the scalable synthesis and characterization of low-density, porous, three-dimensional (3D) solids consisting of two-dimensional (2D) hexagonal boron nitride (h-BN) sheets. The structures are synthesized using bottom-up, low-temperature (∼300 °C), solid-state reaction of melamine and boric acid giving rise to porous and mechanically stable interconnected h-BN layers. A layered 3D structure forms due to the formation of h-BN, and significant improvements in the mechanical properties were observed over a range of temperatures, compared to graphene oxide or reduced graphene oxide foams.

View Article and Find Full Text PDF

The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in paints, printing ink, rubber, paper, cosmetics, sunscreens, car materials, cleaning air products, industrial photocatalytic processes, and decomposing organic matters in wastewater due to their unique physical, chemical, and biological properties. The present study was conducted to assess the antiparasitic efficacies of synthesized TiO2 NPs utilizing leaf aqueous extract of Solanum trilobatum against the adult head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae); larvae of cattle tick Hyalomma anatolicum (a.) anatolicum Koch (Acari: Ixodidae), and fourth instar larvae of malaria vector Anopheles subpictus Grassi (Diptera: Culicidae).

View Article and Find Full Text PDF

The energy, geometrical parameters and vibrational wavenumbers of crotonaldehyde were calculated by using ab initio and B3LYP with 6-31G(d,p) and 6-311G(d,p) basis sets. The FT-IR and FT-Raman spectra for liquid state crotonaldehyde have been recorded in the region 3400-400 cm(-1) and 3400-100 cm(-1), respectively and compared with the theoretical spectrographs constructed from the scaled harmonic vibrational frequencies calculated at HF and DFT levels. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small.

View Article and Find Full Text PDF

Nd(3+) doped unconventional sodium leadbismuthate glass is prepared through the melt quenching method. The amorphous nature of the glass is confirmed through the X-ray diffraction study. The differential thermal study was performed to identify the glass transition and approximate glass thermal stability measurements.

View Article and Find Full Text PDF
FT-IR and FT-RAMAN investigations of nicotinaldehyde.

Spectrochim Acta A Mol Biomol Spectrosc

May 2006

The Fourier transform Raman and infrared spectra of nicotinaldehyde were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals by assuming Cs point group symmetry. A normal coordinate analysis was also carried out using a simple valence force field. A complete vibrational analysis is presented here for this molecule and the results are briefly discussed.

View Article and Find Full Text PDF

The Fourier transform infrared (FT-IR) and Raman (FT-R) spectra of 2-aminopyridine and 2-amino picoline were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals by assuming Cs point group symmetry. A normal co-ordinate analysis was also carried out for the proper assignment of the vibrational frequencies using simple valence force field. A complete vibrational analysis is presented here for the molecules and the results are briefly discussed.

View Article and Find Full Text PDF

The Fourier transform Raman and infrared spectra of carbamoylazide and its deuterated derivative were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals and combinations by assuming C(s) point group symmetry. A normal coordinate analysis was also carried out using Simple valence force field. A complete vibrational analysis is presented here for these molecule and results are briefly discussed.

View Article and Find Full Text PDF