Porcine epidemic diarrhea (PED) is an acute, highly infectious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), which seriously endangers the healthy development of the pig industry. PEDV N protein is the most abundant viral structural protein, which can be combined with viral genomic RNA to form ribonucleoprotein complexes, thereby participating in the transcription and replication of the virus. However, how PEDV hijacks the host transcription translation system to promote viral proliferation remains unclear.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) causes severe morbidity and mortality among newborn piglets. It significantly threatens the porcine industry in China and around the globe. To accelerate the developmental pace of drugs or vaccines against PEDV, a deeper understanding of the interaction between viral proteins and host factors is crucial.
View Article and Find Full Text PDFPorcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection.
View Article and Find Full Text PDFKLF16, a member of KLFs (Krüppel-like factors), contributes to the progression of a variety of cancer types. There is, however, still uncertain regarding the role of KLF16 in viral replication and the signaling mechanism of type I IFN. It was discovered that KLF16 inhibited the replication of porcine epidemic diarrhea virus (PEDV) through the type I IFN signaling pathway.
View Article and Find Full Text PDFAutophagy-related 4B (ATG4B) is found to exert a vital function in viral replication, although the mechanism through which ATG4B activates type-I IFN signaling to hinder viral replication remains to be explained, so far. The current work revealed that ATG4B was downregulated in porcine epidemic diarrhea virus (PEDV)-infected LLC-PK1 cells. In addition, ATG4B overexpression inhibited PEDV replication in both Vero cells and LLC-PK1 cells.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) causes diarrhea and dehydration in pigs and leads to great economic losses in the commercial swine industry. However, the underlying molecular mechanisms of host response to viral infection remain unclear. In the present study, we investigated a novel mechanism by which RALY, a member of the heterogeneous nuclear ribonucleoprotein family, significantly promotes the degradation of the PEDV nucleocapsid (N) protein to inhibit viral replication.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored.
View Article and Find Full Text PDFIn global infection and serious morbidity and mortality, porcine epidemic diarrhea virus (PEDV) has been regarded as a dreadful porcine pathogen, but the existing commercial vaccines are not enough to fully protect against the epidemic strains. Therefore, it is of great necessity to feature the PEDV-host interaction and develop efficient countermeasures against viral infection. As an RNA/DNA protein, the -active response DNA binding protein (TARDBP) plays a variety of functions in generating and processing RNA, including transcription, splicing, transport, and mRNA stability, which have been reported to regulate viral replication.
View Article and Find Full Text PDFZinc finger CCHC-type containing protein 3 (ZCCHC3) acts as an antiviral factor that interacts with RIG-I and cGAS to modulate innate signaling against viral infections. Here, we investigated the role of porcine ZCCHC3 during pseudorabies virus (PRV) proliferation. We found that porcine ZCCHC3 plays an inhibitory role in the proliferation of PRV by regulating cellular innate immune responses.
View Article and Find Full Text PDFSenecavirus A (SVA), an important emerging porcine virus, has outbreaks in different regions and countries each year, becoming a virus with global prevalence. SVA infection has been reported to induce macroautophagy/autophagy; however, the molecular mechanisms of autophagy induction and the effect of SVA on autophagy remain unknown. This study showed that SVA infection induced the autophagy process in the early stage of SVA infection, and the rapamycin-induced autophagy inhibited SVA replication by degrading virus 3 C protein.
View Article and Find Full Text PDFEmerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) is a globally distributed alphacoronavirus that has reemerged lately, resulting in large economic losses. During viral infection, type I interferon (IFN-I) plays a vital role in the antiviral innate immunity. However, PEDV has evolved strategies to limit IFN-I production.
View Article and Find Full Text PDFTripartite motif protein 21 (TRIM21) is an E3 ubiquitin ligase and cytosolic antibody receptor of the TRIM family. Previous reports have indicated that TRIM21 plays an important role during viral infection. This study aimed at examining the role of TRIM21 in the replication of porcine epidemic diarrhea virus (PEDV) and showed that TRIM21 inhibits PEDV proliferation by targeting and degrading the nucleocapsid (N) protein through the proteasomal pathway.
View Article and Find Full Text PDFHost interferon-stimulated gene 20 (ISG20) exerts antiviral effects on viruses by degrading viral RNA or by enhancing IFN signaling. Here, we examined the role of ISG20 during pseudorabies virus (PRV) proliferation. We found that ISG20 modulates PRV replication by enhancing IFN signaling.
View Article and Find Full Text PDFBackground: Porcine epidemic diarrhea virus (PEDV) infection causes an acute enteric tract infectious disease characterized by vomiting, anorexia, dehydration, weight loss and high mortality in neonatal piglets. During PEDV infection, the spike protein (S) is a major virion structural protein interacting with receptors and inducing neutralizing antibodies. However, the neutralizing B-cell epitopes within PEDV S protein have not been well studied.
View Article and Find Full Text PDFGenome sequencing of Catenovulum agarivorans YM01T reveals 15 open-reading frames (ORFs) encoding various agarases. In this study, extracellular proteins of YM01T were precipitated by ammonium sulfate and separated by one-dimensional gel electrophoresis. The results of in-gel agarase activity assay and mass spectrometry analysis revealed that the protein, YM01-3, was an agarase with the most evident agarolytic activity.
View Article and Find Full Text PDFMarine bacterium Catenovulum agarivorans YM01(T) can produce highly thermostable agarases. The draft genome of YM01(T) is about 5.36 Mb and harbors approximately 4,913 genes, including 15 agarase (2 α-agarase and 13 β-agarase)-encoding genes, which will provide references to functional characterization of various agarases from marine bacteria.
View Article and Find Full Text PDF