Publications by authors named "Suji Ye"

Use of raw feedstuffs for livestock is limited by low digestibility. Recently, fermentation of feedstuffs has been highlighted as a new way to improve nutrient absorption through the production of organic acids using inoculated microorganisms, which can also play a probiotic role. However, standard procedures for feedstuff fermentation have not been clearly defined because the process is influenced by climatic variation, and an analytical standard for fermented feedstuffs is lacking.

View Article and Find Full Text PDF

expressing heterologous pathways for xylose, arabinose, and galacturonic acid metabolism has been constructed by a Cas9-based genome editing technology [1]. The fermentation performance of the final strain (YE9) was tested under various substrate conditions, and the fermentation parameters were calculated. The dataset can be used for designing bioprocesses for pectin-rich biomass.

View Article and Find Full Text PDF

Pectin-rich biomass has garnered attention as an alternative biomass source. However, some monomers derived from pectin-rich biomass, namely d-galacturonic acid, l-arabinose, and d-xylose, are not fermentable by industrial microorganisms such as Saccharomyces cerevisiae. The purpose of this study is to develop a S.

View Article and Find Full Text PDF

Pentose sugars are increasingly being used in industrial applications of Saccharomyces cerevisiae. Although L-arabinose is a highlighted pentose that has been identified as next-generation biomass, arabinose fermentation has not yet undergone extensive development for industrial utilization. In this study, we integrated a heterologous fungal arabinose pathway with a deletion of PHO13 phosphatase gene.

View Article and Find Full Text PDF

Bioconversion of lignocellulosic biomass into ethanol requires efficient xylose fermentation. Previously, we developed an engineered Saccharomyces cerevisiae strain, named SR8, through rational and inverse metabolic engineering strategies, thereby improving its xylose fermentation and ethanol production. However, its fermentation characteristics have not yet been fully evaluated.

View Article and Find Full Text PDF

L-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juiceprocessing waste. This review presents native and engineered microorganisms that can ferment L-arabinose.

View Article and Find Full Text PDF