This hypothesis demonstrates that the efficiency of loop-mediated isothermal amplification (LAMP) for nucleic acid detection can be positively influenced by the preconcentration of microbial cells onto hydrophobic paper surfaces. The mechanism of this model is based on the high affinity of microbes towards hydrophobic surfaces. Extensive studies have demonstrated that hydrophobic surfaces exhibit enhanced bacterial and fungal adhesion.
View Article and Find Full Text PDFThis study investigated the colorimetric response of standard glucose, serum glucose, and nucleic acid assays on various paper surfaces with different wettability, including hydrophilic, hydrophobic, and nearly superhydrophobic surfaces. Water contact angles (WCA) formed by water droplets on each surface were measured using ImageJ software. The hydrophilic surface showed no contact angle, while the hydrophobic and nearly superhydrophobic surfaces exhibited contact angles of 115.
View Article and Find Full Text PDFFluorescence-based nucleic acid assays frequently exhibit a feeble signal at low analyte concentrations, necessitating complex, expensive methods such as the development of sequence-specific oligo tags, molecular beacons, and chemical modifications to maintain high detection sensitivity. Hence, there is growing interest in accomplishing fluorescence enhancement in nucleic acid assays using robust and cost-effective strategies. The study exploits the use of two compaction agents, PEG 8000 and CTAB, to compact the ITS-2 amplicon of the fungus and evaluates the effect of both of these agents on the fluorescence intensity of SYTO-9 labelled nucleic acids.
View Article and Find Full Text PDFThis work reports an eco-friendly synthesis of silver nanoparticles (AgNPs) using endophytic bacteria, isolated from the stem bark of . The synthesis of AgNPs was confirmed by visual observation as a change in color of the bacterial solution impregnated with silver. Further, the morphology of the AgNPs, average size, and presence of elemental silver were characterized by UV-Visible spectroscopy, scanning electron microscopy, and dynamic light scattering spectroscopy.
View Article and Find Full Text PDF