Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure-activity relationships leading to the discovery of AM-2394, a structurally distinct GKA. AM-2394 activates GK with an EC50 of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an ob/ob mouse model of diabetes.
View Article and Find Full Text PDFTwo 1-(4-aryl-5-alkyl-pyridin-2-yl)-3-methylurea glucokinase activators were identified with robust in vivo efficacy. These two compounds possessed higher solubilities than the previously identified triaryl compounds (i.e.
View Article and Find Full Text PDFGlucokinase (GK) activators represent a class of type 2 diabetes therapeutics actively pursued due to the central role that GK plays in regulating glucose homeostasis. Herein we report a novel C5-alkyl-2-methylurea-substituted pyridine series of GK activators derived from our previously reported thiazolylamino pyridine series. Our efforts in optimizing potency, enzyme kinetic properties, and metabolic stability led to the identification of compound 26 (AM-9514).
View Article and Find Full Text PDFHerein, we report the lead optimization of amrinone-phenylalanine based GPR142 agonists. Structure-activity relationship studies led to the discovery of aminopyrazole-phenylalanine carboxylic acid 22, which exhibited good agonistic activity, high target selectivity, desirable pharmacokinetic properties, and no cytochrome P450 or hERG liability. Compound 22, together with its orally bioavailable ethyl ester prodrug 23, were found to be suitable for in vivo proof-of-concept studies.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2012
GPR142 is a novel GPCR that is predominantly expressed in pancreatic β-cells. GPR142 agonists potentiate glucose-dependent insulin secretion, and therefore can reduce the risk of hypoglycemia. Optimization of our lead pyridinone-phenylalanine series led to a proof-of-concept compound 22, which showed in vivo efficacy in mice with dose-dependent increase in insulin secretion and a decrease in glucose levels.
View Article and Find Full Text PDFThe eukaryotic initiation factor 4E (eIF4E) plays a central role in the initiation of gene translation and subsequent protein synthesis by binding the 5' terminal mRNA cap structure. We designed and synthesized a series of novel compounds that display potent binding affinity against eIF4E despite their lack of a ribose moiety, phosphate, and positive charge as present in m7-GMP. The biochemical activity of compound 33 is 95 nM for eIF4E in an SPA binding assay.
View Article and Find Full Text PDFProstaglandin D2 (PGD2) plays a key role in mediating allergic reactions seen in asthma, allergic rhinitis, and atopic dermatitis. PGD2 exerts its activity through two G protein-coupled receptors (GPCRs), prostanoid D receptor (DP or DP1), and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2 or DP2). We report the optimization of a series of phenylacetic acid derivatives in an effort to improve the dual activity of AMG 009 against DP and CRTH2.
View Article and Find Full Text PDFSeveral potent, functionally active MCHr1 antagonists derived from quinolin-2(1H)-ones and quinazoline-2(1H)-ones have been synthesized and evaluated. Pyridylmethyl substitution at the quinolone 1-position results in derivatives with low-nM binding potency and good selectivity with respect to hERG binding.
View Article and Find Full Text PDFSeveral potent and efficacious MCHr1 antagonists containing an ortho-amino benzamide or nicotinamide chemotype have been identified, exemplified by 28 and 50.
View Article and Find Full Text PDFThe identification of a novel series of benzamide-containing MCHr1 antagonists is described. Compound 22 displayed moderate efficacy in a diet induced obesity mice model.
View Article and Find Full Text PDF