We developed a piecewise isothermal nucleic acid test (PINAT) as a platform technology for diagnosing pathogen-associated infections, empowered by an illustrative novel methodology that embeds an exclusive DNA-mediated specific probing reaction with the backbone of an isothermal reverse transcription cum amplification protocol for detecting viral RNA. In a point-of-care format, this test is executable in a unified single-step, single-chamber procedure, leading to seamless sample-to-result integration in an inexpensive, scalable, pre-programmable, and customizable portable device, with mobile-app-integrated interpretation and analytics involving minimal manually operative procedures. The test exhibited a high sensitivity and specificity of detection when assessed using 200 double-blind patient samples for detecting SARS-CoV-2 infection by the Indian Council of Medical Research (ICMR), and subsequently using 170 double-blind patient samples in a point-of-care format outside controlled laboratory settings as performed by unskilled technicians in an organized clinical trial.
View Article and Find Full Text PDFWe present a rapid (<10 s), cost-effective, unique single-step method for fabricating paper-based devices without necessitating any expensive instrumentation, simply by deploying correction pens that are otherwise commonly used for masking typos in printed or written matters. The marked regions formed by deposits from the correction pen demonstrate ubiquitous flow resistances to typical aqueous solutions and organic solvents in the transverse direction, resulting in a preferential bulk flow along the axial direction of the paper channels 'fabricated' in the process. Considering the simplicity and cost-effectiveness of this platform, it is deemed to be ideal for (bio) chemical sensing and point-of-care diagnostics in resource-limited settings.
View Article and Find Full Text PDF