Publications by authors named "Sujata Roy Moulik"

Cytochrome P450arom (CYP19), a product of cyp19a1 gene, catalyzes the conversion of androgens to estrogens and is essential for regulation of reproductive function in vertebrates. In the present study, we isolated partial cDNA encoding the ovarian (cyp19a1a) and brain (cyp19a1b) P450arom genes from adult female perch, Anabas testudineus and investigated their regulation by estrogen in vivo. Results demonstrated that cyp19a1a and cyp19a1b predominate in ovary and brain respectively, with quantity of both attuned to reproductive cycle.

View Article and Find Full Text PDF

P450 aromatase is the terminal enzyme in the steroidogenic pathway and catalyzes the conversion of androgens to estrogens. The expression of cyp19a1 genes in brain and gonad of Indian major carp, Labeo rohita swim-up fry was measured by quantitative real-time polymerase chain-reaction. Results demonstrated that cyp19a1b and cyp19a1a predominate in brain and gonad respectively.

View Article and Find Full Text PDF

Gonadal steroidogenesis is critical for survival and reproduction of all animals. The pathways that regulate gonadal steroidogenesis are therefore conserved among animals from the steroidogenic enzymes to the intracellular signaling molecules and G protein-coupled receptors (GPCRs) that mediate the activity of these enzymes. Regulation of fish ovarian steroidogenesis in vitro by gonadotropin (GtH) and GPCRs revealed interaction between adenylate cyclase and calcium/calmodulin-dependent protein kinases (CaMKs) and also MAP kinase pathway.

View Article and Find Full Text PDF

Cytochrome P450 aromatase (P450arom), a product of cyp19a1 gene, plays pivotal roles in vertebrate steroidogenesis and reproduction. In this study, we isolated partial cDNA encoding the ovarian (cyp19a1a) and brain (cyp19a1b) P450arom genes from adult female rohu, Labeo rohita and investigated the regulation of cyp19a1a by gonadotropin and SF-1. The cyp19a1a and cyp19a1b were expressed predominantly in the ovary and brain respectively, with quantity of the former attuned to reproductive cycle.

View Article and Find Full Text PDF

GPR-30, now named as GPER (G protein-coupled estrogen receptor) was first identified as an orphan receptor and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. Later studies demonstrated that GPER has the characteristics of a high affinity estrogen membrane receptor on Atlantic croaker and zebra fish oocytes and mediates estrogen inhibition of oocyte maturation in these two distantly related teleost. To determine the broad application of these findings to other teleost, expression of GPER mRNA and its involvement in 17β-estradiol mediated inhibition of oocyte maturation in other cyprinid, Cyprinus carpio was investigated.

View Article and Find Full Text PDF

Fully grown fish and amphibian oocytes exposed to a maturation-inducing steroid (MIS) activates multiple signal transduction pathways, leading to formation and activation of maturation-promoting factor (MPF) and induction of germinal vesicle breakdown (GVBD). The present study was to investigate if phosphatidylinositol 3 kinase (PI3 kinase) and mitogen-activated protein kinase (MAP kinase) activation are required for naturally occurring MIS, 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced cdc2 activation and oocyte maturation (OM) in Tenualosa ilisha. We observed that 17,20β-P-induced OM was significantly inhibited by PI3 kinase inhibitors Wortmannin and LY29400.

View Article and Find Full Text PDF

Circanual variations in plasma testosterone (T), 17-estradiol (E2), and 17,20-dihydroxy-4-pregnen-3-one (17,20-P) levels and ovarian steroid synthetic potential of Tenualosa ilisha of river Hooghly, West Bengal, India were examined. This fish exhibited bi-annual spawning; one during April-May and another during August-September. Coinciding with the GSI values, present study recorded a decline in plasma T and E2 levels from October, reaching their lowest values in January followed by a rapid rise in March when the ovary contained mostly vitellogenic follicles and remained high up to April (postvitellogenic stage).

View Article and Find Full Text PDF

Previously, we observed that in vitro steroidogenesis in intact ovarian follicles of common carp Cyprinus carpio can alone be induced by recombinant human insulin-like growth factor (IGF-I) and bovine insulin (b-insulin) and this induction was gonadotropin-independent. To investigate early signal transduction components involved in this process, the possible role of phosphatidylinositol 3-kinase (PI3 kinase) during ovarian steroidogenesis was examined. IGF-I and b-insulin induced testosterone and 17β-estradiol production in carp ovarian theca and granulosa cells in short-term coincubation and this induction was significantly inhibited by Wortmannin and LY294002, two mechanistically different specific inhibitors of PI3 kinase.

View Article and Find Full Text PDF