Publications by authors named "Sujata Law"

The ocular surface is subject to a range of potentially hazardous environmental factors and substances, owing to its anatomical location, sensitivity, and physiological makeup. Xenobiotic stress exerted by chronic pesticide exposure on the cornea is primarily responsible for ocular irritation, excessive tear production (hyper-lacrimation), corneal abrasions and decreased visual acuity. Traditional medicine hails the humble onion (Allium cepa) for its multi-faceted properties including but not limited to anti-microbial, antioxidant, anti-inflammatory and wound healing.

View Article and Find Full Text PDF

Introduction: Human umbilical cord blood is rich in hematopoietic cells. We aimed to focus on the morphological, biochemical, membrane protein profile and surface protein expression differences of erythrocytes, isolated from cord and adult peripheral blood using techniques such as high-resolution scanning electron microscopy (SEM), gel electrophoresis (SDS-PAGE) and flow cytometry.

Methods: Adult peripheral blood was collected from consenting adults, and umbilical cord blood was procured from consenting mothers, post-delivery at Medical College, Kolkata.

View Article and Find Full Text PDF

Environmental exposure of N-nitroso compounds (NOCs) from various sources like tobacco smoke, pesticides, smoked meat, and rubber manufacturing industries has been an alarming cause of carcinogenesis. Neonatal exposure to the carcinogenic N-N'ethylnitrosourea (ENU), a NOC has been established to cause leukemogenesis. Our world is constantly battling against cancer with consistent investigations of new anti-cancer therapeutics.

View Article and Find Full Text PDF

Exposure to N-nitroso compounds (NOCs) in our environment via pesticides, tobacco, and smoked meat can be potentially carcinogenic. The induction of N-N' ethylnitrosourea (ENU), a genotoxic NOC, leads to leukemogenesis. The study aimed to explore the ameliorating effect of the Ayurvedic herb on the bone marrow cells of ENU-induced leukemic mice.

View Article and Find Full Text PDF

Pesticides aid in crop-protection against pests and increase yield. However, the xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health. There is a lacuna in our knowledge about their impact on the ocular surface The present work sheds light on this gap by analysing the deterioration of visual acuity as a consequence of pesticide induced xenobiotic stress and Notch pathway dysregulation.

View Article and Find Full Text PDF

Myelodysplastic syndrome is a heterogenous group of disorder with clonal dysregulated hematopoiesis characterized by bone marrow failure, cytogenetic and molecular abnormalities and variable risk of progression to acute myeloid leukemia (AML). The bone marrow niche plays a major role in maintaining the homeostasis and is often injured by the chemotherapeutic drugs leading to catastrophic consequences like myelodysplastic syndrome. In the present study, we made an attempt to find out the osteoblastic niche related alterations in the myelodysplastic bone marrow through mainly flowcytometric and fluorescent microscopic studies.

View Article and Find Full Text PDF

Myelodysplastic syndrome (MDS) is regarded as a spectrum of bone marrow failure disorders that share hemato-pathological state of cellular dysplasia and cytopenia. The modern treatment of cancers like chemotherapy and radiation therapy sometimes severely pounce on the basic hematopoietic stem/progenitor cellular (HSPC) compartment which gradually disclose the clinical symptoms of MDS. The present study involves flowcytometric protein expression analysis of insulin growth factor receptor (IGFR), PI3K-Akt-mTOR pathway, the autophagy related proteins (ATG's), the status of antioxidative molecules SOD2 and SDF1 and apoptosis profiling in ethyl-nitroso-urea induced myelodysplasia.

View Article and Find Full Text PDF

The etiologic link between pesticide toxicity and aplastic anemia in agricultural and agro-industrial setting has been frequently reported in epidemiological studies conducted worldwide. Chronic pesticide toxicity causes long-term bone marrow injury and perturbs the normal hematopoietic physiology, including survival of hematopoietic progenitor cells and bone marrow's blood cell forming ability. The purpose of this study is to understand the mechanism of pesticide toxicity-mediated bone marrow aplasia by studying Wnt/β-catenin signaling pathway and microenvironmental stromal components.

View Article and Find Full Text PDF

Myelodysplastic syndrome is considered globally as heterogenous group of neoplasm which often proclaims leukemic progression. The heterogeneity is reflected not only in clinical manifestations of the disease but also in salient causes of disease development. In spite of multiple therapeutic modalities, shortfall towards treatment of this disorder still persists.

View Article and Find Full Text PDF

Aplastic anemia is the bone marrow failure condition characterized by the development of hypocellularity in both marrow and peripheral blood compartments. Anti-tumor chemotherapeutic agents often exert secondary effect on hematopoietic system leading to aplastic anemia by marrow failure. The precise mechanisms behind the marrow ablative effects of the drugs remain yet to be established.

View Article and Find Full Text PDF

The consequences of chronic pesticide exposure on the ocular surface are not yet fully known and lacunae exist regarding the repercussions of this xenobiotic insult on cellular turnover. The present work aims to establish the mechanistic relationship between ocular morbidity and chronic pesticide exposure by analyzing the impact on key regulators responsible for cell cycle and death. Vital components of cell cycle and death were primarily explored in this study by mimicking the on-field scenario regarding chronic pesticide exposure in a murine model.

View Article and Find Full Text PDF

Chemoresistance to the anticancer therapy is the main challenge for the recurrence of cancer and it is responsible for treatment failure and unfavorable clinical outcome. Understanding the mechanisms of chemoresistance in cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last few decades, cancer stem cells (CSC) have proven to play a key role in tumor initiation and may also act as a key factor for chemoresistance and recurrence of the disease following chemotherapy.

View Article and Find Full Text PDF

Relevance: Malignant peritoneal sarcomatosis related ascitic formation often leads to grave consequences but the therapeutic management of the fatal pathophysiological condition remains a rarely discussed issue. The present study investigates the anti-neoplastic activity of the plant alkaloid from Ruta graveolens on ascitic Sarcoma-180 bearing mice as a model of human malignant peritoneal ascites.

Materials And Methods: The efficacy of the loco-regional administration of Ruta graveolens on tumour cells was explored with cytopathological and cytotoxicological studies, along with the expressional modulation vital regulatory molecules viz.

View Article and Find Full Text PDF

The evolutionarily conserved Wnt signaling pathway regulates physiological hematopoiesis, a process of formation of blood cells and has been shown to play crucial role in the development of both myeloid and lymphoid malignancies. The Wnt signaling pathway can be broadly divided into canonical and non-canonical pathways. In the present study, we investigated the pathobiology of leukemia by studying the expression profile of Wnt proteins, receptors, key signaling intermediates and endogenous Wnt antagonist involved in canonical and non-canonical pathways in the bone marrow (BM) hematopoietic stem/progenitor cell (HSPC) compartment of experimental leukemic mice.

View Article and Find Full Text PDF

Aplastic anemia or bone marrow failure often develops as an effect of chemotherapeutic drug application for the treatment of various pathophysiological conditions including cancer. The long-term bone marrow injury affects the basic hematopoietic population including hematopoietic stem/progenitor cells (HSPCs). The present study aimed in unearthing the underlying mechanisms of chemotherapeutics mediated bone marrow aplasia with special focus on altered redox status and associated effects on hematopoietic microenvironment and epigenetic status of hematopoietic cells.

View Article and Find Full Text PDF

Ocular toxicity as a consequence of chronic pesticide exposure is one of the health hazards caused due to extended exposure to pesticides. The cornea, due to its position as the outer ocular layer and its role in protecting the internal layers of the eye; is gravely affected by this xenobiotic insult to the eye, leading to ocular irritation and damage to normal vision. The deleterious effects of chronic pesticide exposure on the various corneal layers and the ocular risks involved therein, were explored by mimicking the on-field scenario.

View Article and Find Full Text PDF

Myelodysplastic syndrome (MDS) is a poorly understood dreadful hematopoietic disorder that involves maturational defect and abnormalities in blood cell production leading to dysplastic changes and peripheral blood pancytopenia. The present work aims in establishing the mechanistic relationship of the expressional alterations of major tumor suppressor cascade, vital cell cycle inhibitors and hematopoietic microenvironmental components with the disease pathophysiologies. The study involves the development of N-N' Ethylnitrosourea (ENU) induced mouse model of MDS, characterization of the disease with blood film and bone marrow smear studies, scanning electron microscopic observation, mitochondrial membrane potential determination, flowcytometric analysis of osteoblastic and vascular niche components along with the expressional study of cleaved caspase-3, PCNA, Chk-2, p53, Ndn, Gfi-1, Tie-2, Sdf-1, Gsk-3β, p18 and Myt-1 in the bone marrow compartment.

View Article and Find Full Text PDF

Exposure to arsenic on a regular basis, mainly through drinking water, agricultural pesticide, and sometimes therapeutic dose, results in various diseases of different tissues including the bone marrow hematopoietic system. Hematopoiesis is a dynamic process by which bone marrow (BM) hematopoietic stem/progenitor cells (HSPCs) generate a relatively constant pool of functionally mature blood cells by the support of microenvironmental components. The present study has been aimed to understand stem cell microenvironmental status during arsenic toxicity and the consequent reflection of dysregulation involving the hematopoietic machinery in experimental mice.

View Article and Find Full Text PDF

Hematological disorders like myelodysplastic syndrome (MDS) may arise due to cumulative dysregulation of various signalling pathways controlling proliferation, differentiation, maturation and apoptosis of bone marrow cells. This devastating bone marrow condition can be due to consequential abnormalities in haematopoiesis as well as its supportive microenvironment. Although mutations related to JAK/STAT pathway are common in myeloproliferative neoplasms, further studies are required to fully explore the myelodysplastic scenario regarding the concerned pathway.

View Article and Find Full Text PDF

Aplastic anemia, the paradigm of bone marrow failure, is characterized by pancytopenic peripheral blood and hypoplastic bone marrow. Among various etiologies, inappropriate use of DNA alkylating drugs like cyclophosphamide and busulfan often causes the manifestation of the dreadful disease. Cell cycle impairment in marrow hematopoietic stem/progenitor compartment together with cellular apoptosis has been recognized as culpable factors behind aplastic pathophysiologies.

View Article and Find Full Text PDF

Downregulation of p53 is associated with most of the neoplasms, however it claims additional significance for hematopoietic malignancy due to its supplementary role during hematopoiesis. Apart from the classical role as tumor suppressor, p53 during steady state hematopoiesis is associated with the maintenance of quiescent cell population in bone marrow by upregulating necdin (Ndn) and Gfi-1. We felt, it is necessary to delineate its attribution towards malignant conversion of hematopoietic system during leukemogenesis from all the possible angles.

View Article and Find Full Text PDF

Pesticide exposure can occur directly or indirectly in an occupational setting or otherwise. The health hazards of pesticides have long been studied; however, little is known about the ocular insult of these potent chemicals. In this study, we examined the consequences of long-term pesticide exposure on the ocular tissue in animal model with special focus on the cornea.

View Article and Find Full Text PDF

Soft tissue sarcomas are relatively rare, unusual, anatomically diverse group of malignancies. According to the recent literature and medical bulletins, tumor growth and aggressiveness immensely relies on its anatomical locations. However, it is unclear whether the cranio-caudal anatomical axis of the mammalian body can influence sarcoma development and the underlying molecular mechanisms are not yet deciphered.

View Article and Find Full Text PDF

According to case-control studies, long-term pesticide exposure can cause bone marrow aplasia like hematopoietic degenerative disease leading to impaired hematopoiesis and increased risk of aplastic anemia in human subjects. However, the exact mechanism of pesticide mediated hematotoxicity still remains elusive. In this study, we investigated the role of noncanonical Wnt signaling pathway, a crucial regulator of adult hematopoiesis, in pesticide induced bone marrow aplasia mouse model.

View Article and Find Full Text PDF

Maintenance of tissue homeostasis relies on the accurate regulation of tissue specific stem cell activity which is governed by the dynamic interaction between the positive and negative feedback modulating mechanism of stem cell microenvironmental niche. Alteration or deregulation of the "stem-microenvironmental networking" provokes disease development. Limbal epithelial stem cells (LESC) are the initiator hierarchy that maintains corneal integrity.

View Article and Find Full Text PDF