Results of investigation of the physicochemical properties of zinc complexes containing substituted phenols as axial ligand having general formula [X-Zn-t(p-CH3) PP] [where X = different phenolates as axial ligand] in impurity-free organic solvent are presented. The four-coordinated zinc porphyrin accepts one axial ligand in 1 : 1 molar ratio to form five-coordinated complex, which is purified by column chromatography and characterized by physicochemical, biological evaluation and TGA/DTA studies. Absorption spectra show two principal effects: a red shift for phenols bearing substituted electron releasing groups (-CH3, -NH2) and blue shift for phenols bearing electron withdrawing groups (-NO2, -Cl) relative to Zn-t(p-CH3) PP, respectively.
View Article and Find Full Text PDFA series of parasubstituted tetraphenylporphyrin zirconium(IV) salicylate complexes (SA/5-SSAZr(IV)RTPP, R = p-H, p-CH3, p-NO2, p-Cl, SA = salicylate, and 5-SSA = 5-sulfosalicylate) have been synthesized, and the spectral properties of free base porphyrins, their corresponding metallated, and axially ligated zirconium(IV) porphyrin compounds were compared with each other. A detailed analysis of ultraviolet-visible (UV-vis), proton nulcear magnetic resonance ((1)H NMR) spectroscopy, infrared (IR) spectroscopy, and elemental analysis suggested the transformation from free base porphyrins to zirconium(IV) porphyrins. The ability of the metal in this complex for extra coordination of solvent molecules was confirmed by ESI-MS spectra.
View Article and Find Full Text PDF