Publications by authors named "Sujan Piya"

Bone drilling is a universal procedure in orthopaedics for fracture fixation, installing implants, or reconstructive surgery. Surgical drills are subjected to wear caused by their repeated use, thermal fatigue, irrigation with saline solution, and sterilization process. Wear of the cutting edges of a drill bit (worn drill) is detrimental for bone tissues and can seriously affect its performance.

View Article and Find Full Text PDF

Unlabelled: Despite effective new therapies, adaptive resistance remains the main obstacle in acute myelogenous leukemia (AML) therapy. Autophagy induction is a key mechanism for adaptive resistance. Leukemic blasts at diagnosis express higher levels of the apical autophagy kinase ULK1 compared with normal hematopoietic cells.

View Article and Find Full Text PDF

Strategies to overcome resistance to FMS-like tyrosine kinase 3 (FLT3)-targeted therapy in acute myeloid leukemia (AML) are urgently needed. We identified autophagy as one of the resistance mechanisms, induced by hypoxia and the bone marrow microenvironment via activation of Bruton tyrosine kinase (BTK). Suppressing autophagy/BTK sensitized FLT3- mutated AML to FLT3 inhibitor-induced apoptosis.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells.

View Article and Find Full Text PDF

The COVID-19 pandemic has significantly affected the supply chains (SCs) of many industries, including the oil and gas (O&G) industry. This study aims to identify and analyze the drivers that affect the resilience level of the O&G SC under the COVID-19 pandemic. The analysis helps to understand the driving intensity of one driver over those of others as well as drivers with the highest driving power to achieve resilience.

View Article and Find Full Text PDF

The NOTCH1-MYC-CD44 axis integrates cell-intrinsic and extrinsic signaling to ensure the persistence of leukemia-initiating cells (LICs) in T-cell acute lymphoblastic leukemia (T-ALL) but a common pathway to target this circuit is poorly defined. Bromodomain-containing protein 4 (BRD4) is implicated to have a role in the transcriptional regulation of oncogenes MYC and targets downstream of NOTCH1, and here we demonstrate its role in transcriptional regulation of CD44. Hence, targeting BRD4 will dismantle the NOTCH1-MYC-CD44 axis.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

RAF molecules play a critical role in cell signaling through their integral impact on the RAS/RAF/MEK/ERK signaling pathway, which is constitutively activated in a sizeable subset of acute myeloid leukemia (AML) patients. We evaluated the impact of pan-RAF inhibition using LY3009120 in AML cells harboring mutations upstream and downstream of RAF. LY3009120 had anti-proliferative and pro-apoptotic effects and suppressed pERK1/2 levels in leukemic cells with and mutations.

View Article and Find Full Text PDF

Background: Biological hydrogels provide a conducive three-dimensional extracellular matrix environment for encapsulating and cultivating living cells. Microenvironmental modulus of hydrogels dictates several characteristics of cell functions such as proliferation, adhesion, self-renewal, differentiation, migration, cell morphology and fate. Precise measurement of the mechanical properties of gels is necessary for investigating cellular mechanobiology in a variety of applications in tissue engineering.

View Article and Find Full Text PDF

Bone drilling is a well-known process in operative fracture treatment and reconstructive surgery. The cutting ability of the drill is lost when used for multiple times. In this study, the effect of different levels of drill wear on bone temperature, drilling force, torque, delamination around the drilling region and surface roughness of the hole was investigated using a series of experiments.

View Article and Find Full Text PDF

Drilling is a common surgical procedure for fracture treatment and reconstruction in multiple surgical fields, including orthopaedics, neurology, and dentistry. Drilling delicate tissue (such as bone) with a hard metallic tool is considered notorious for inducing mechanical and thermal damage, which can adversely affect osseointegration and may weaken the bond between the bone and implant, or other fixative devices anchoring the bone. The aim of this study is to explore the benefits of vibrational drilling (VD) in overcoming the complications associated with conventional drilling (CD).

View Article and Find Full Text PDF

Anti-leukemic effect of BET/BRD4 (BETP) protein inhibition has been largely attributed to transcriptional downregulation of cellular anabolic/anti-apoptotic processes but its effect on bone marrow microenvironment, a sanctuary favoring persistence of leukemia stem/progenitor cells, is unexplored. Sustained degradation of BETP with small-molecule BET proteolysis-targeting chimera (PROTAC), ARV-825, resulted in marked downregulation of surface CXCR4 and CD44, key proteins in leukemia-microenvironment interaction, in AML cells. Abrogation of surface CXCR4 expression impaired SDF-1α directed migration and was mediated through transcriptional down-regulation of PIM1 kinase that in turn phosphorylates CXCR4 and facilitates its surface localization.

View Article and Find Full Text PDF

Cancer cells are addicted to mutations that cause gain of function in oncogenes and loss of function in tumor suppressors, so that these cells are reliant on aberrant signaling pathways and transcription. Protein-protein and DNA-protein interactions that cause chromatin remodeling are another source of the deregulation of critical signaling and transcriptional regulators, altering epigenetic signatures and creating additional vulnerabilities. Owing to mutations in multiple epigenetic regulators in hematologic malignancies, cancer cells are highly addicted to altered transcription.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS), a component of the cell wall of gram-negative bacteria, elicits the secretion of cytokines, such as interferons, that stimulate the host defense system. Previously, we demonstrated that interferons induce interferon regulatory factors (IRFs) 1, 3, and 7, which regulate the transcription of Noxa and alter the expression profiles of Bcl-2 family proteins in tumors. However, the immediate consequences of LPS stimulation on Noxa and BH3 expression in tumor cells remain uncharacterized.

View Article and Find Full Text PDF

Therapeutic inhibition of macroautophagy/autophagy is expected to increase chemosensitivity of cancers and alter tumor-stroma interdependence. The hypoxic, metabolically challenged bone marrow microenvironment confers chemoresistance to leukemia cells. The impact of autophagy inhibition in the context of microenvironment-mediated resistance in leukemia is less explored.

View Article and Find Full Text PDF

Autophagy is a cellular adaptive mechanism to stress, including that induced by chemotherapeutic agents. Reverse phase protein array suggested that high expression of the essential autophagy-related protein, Atg7, was associated with shorter remission in newly diagnosed acute myeloid leukemia (AML) patient samples, indicating a role in chemoresistance. Knockdown of Atg7 in AML cells using short hairpin RNA markedly increased apoptosis and DNA damage following treatment with cytarabine and idarubicin.

View Article and Find Full Text PDF

MDM2 (mouse double minute 2) inhibitors that activate p53 and induce apoptosis in a non-genotoxic manner are in clinical development for treatment of leukemias. P53 can modulate other programmed cell death pathways including autophagy both transcriptionally and non-transcriptionally. We investigated autophagy induction in acute leukemia by Nutlin 3a, a first-in-class MDM2 inhibitor.

View Article and Find Full Text PDF

p53 regulates various cellular responses through transcriptional regulation of distinct sets of target genes. Dual specificity phosphatase 6 (DUSP6) is a cytosolic phosphatase that inactivates the extracellular-signal-regulated kinase 1/2 (ERK1/2). This study demonstrates that p53 transactivates DUSP6 in human colorectal HCT116 cells to regulate ERK1/2 in p53-mediated cell death.

View Article and Find Full Text PDF

The mechanisms underlying adenovirus-mediated autophagy are currently unknown. Recently, members of the Bcl-2 protein family have been associated with autophagy. It was also reported that the Bcl-2 homology-3 (BH3) domain encompassed by both Beclin 1 and Bcl-2-like proteins is essential for their pro-autophagy or anti-autophagy functions.

View Article and Find Full Text PDF

Autophagy is a cellular process to degrade long-lived or malfunctioning proteins and obsolete or damaged organelles. It maintains cellular homeostasis and helps cells survive stressful conditions. Tumor suppressors mostly positively regulate autophagy, whereas oncogene products usually inhibit autophagy.

View Article and Find Full Text PDF

IFN-γ plays a critical role in tumor immunosurveillance by affecting either immune cells or tumor cells; however, IFN-mediated effects on tumor elimination are largely unknown. In this study, we showed that IFN regulatory factors (IRF) modulated by IFNs up- and downregulated Noxa expression, a prodeath BH3 protein, in various cancer cells. Inhibition of Noxa expression using short hairpin RNA in tumor cells leads to resistance against lipopolysaccharide (LPS)-induced tumor elimination, in which IFN-γ is known as a critical effecter in mice.

View Article and Find Full Text PDF

DNA damage stabilizes the p53 tumor suppressor protein that determines the cell fate by either cell cycle arrest or cell death induction. Noxa, the BH3-only Bcl-2 family protein, was shown to be a key player in p53-induced cell death through the mitochondrial dysfunction; however, the molecular mechanism by which Noxa induces the mitochondrial dysfunction to cause cell death in response to genotoxic agents is largely unknown. Here, we show that the mitochondrial-targeting domain (MTD) of Noxa is a prodeath domain.

View Article and Find Full Text PDF

Downstream of Bid (DOBI) known as Pus10, has been identified as a modulator of TRAIL-induced cell death using RNAi library screening. The crystal structure of DOBI has revealed that it is a crescent-shaped protein containing the pseudouridine synthase catalytic domain and a THUMP-containing domain. Here, we demonstrated that DOBI is expressed in various tissues such as heart and lung, and is also expressed in various tumor cells such as HeLa and A549.

View Article and Find Full Text PDF

Objective: Platinum (Pt) based drugs including cisplatin and carboplatin are widely used as anticancer drugs in various human cancers. Many studies have shown that chemotherapeutic agents synergistically enhance cell death induced by death ligands. However it has been recently reported that cisplatin may inhibit tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death through inactivation of caspases.

View Article and Find Full Text PDF

TRAIL is an apoptotic cell death-inducing ligand that belongs to a TNF superfamily. To identify the regulators that govern the susceptibility to TRAIL, TRAIL-resistant HeLa (TR) cells were established by repeatedly treating HeLa cells with TRAIL. Here we showed that scaffolding protein Homer1 plays a decisive role in regulating the apoptotic susceptibility to TRAIL.

View Article and Find Full Text PDF