Publications by authors named "Sujan Devkota"

Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer's disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes.

View Article and Find Full Text PDF

Mutations that cause familial Alzheimer's disease (FAD) are found in amyloid precursor protein (APP) and presenilin, the catalytic component of γ-secretase, that together produce amyloid β-peptide (Aβ). Nevertheless, whether Aβ is the primary disease driver remains controversial. We report here that FAD mutations disrupt initial proteolytic events in the multistep processing of APP substrate C99 by γ-secretase.

View Article and Find Full Text PDF

Presenilin-1 (PS1) is the catalytic subunit of γ-secretase which cleaves within the transmembrane domain of over 150 peptide substrates. Dominant missense mutations in PS1 cause early-onset familial Alzheimer's disease (FAD); however, the exact pathogenic mechanism remains unknown. Here we combined Gaussian accelerated molecular dynamics (GaMD) simulations and biochemical experiments to determine the effects of six representative PS1 FAD mutations (P117L, I143T, L166P, G384A, L435F, and L286V) on the enzyme-substrate interactions between γ-secretase and amyloid precursor protein (APP).

View Article and Find Full Text PDF

The membrane-embedded γ-secretase complex processively cleaves within the transmembrane domain of amyloid precursor protein (APP) to produce 37-to-43-residue amyloid β-peptides (Aβ) of Alzheimer's disease (AD). Despite its importance in pathogenesis, the mechanism of processive proteolysis by γ-secretase remains poorly understood. Here, mass spectrometry and Western blotting were used to quantify the efficiency of tripeptide trimming of wild-type (WT) and familial AD (FAD) mutant Aβ49.

View Article and Find Full Text PDF

The transmembrane domain (TMD) of the amyloid precursor protein of Alzheimer's disease is cut processively by γ-secretase through endoproteolysis and tricarboxypeptidase "trimming". We recently developed a prototype substrate TMD mimetic for structural analysis-composed of a helical peptide inhibitor linked to a transition-state analogue-that simultaneously engages a substrate exosite and the active site and is pre-organized to trap the carboxypeptidase transition state. Here, we developed variants of this prototype designed to allow visualization of transition states for endoproteolysis, TMD helix unwinding, and lateral gating of the substrate, identifying potent inhibitors for each class.

View Article and Find Full Text PDF

Production of amyloid β-protein (Aβ) is carried out by the membrane-embedded γ-secretase complex. Mutations in the transmembrane domain of amyloid β-protein precursor (APP) associated with early-onset familial Alzheimer's disease (FAD) can alter the ratio of aggregation-prone 42-residue Aβ (Aβ42) to 40-residue Aβ (Aβ40). However, APP substrate is proteolyzed processively by γ-secretase along two pathways: Aβ49→Aβ46→Aβ43→Aβ40 and Aβ48→Aβ45→Aβ42→Aβ38.

View Article and Find Full Text PDF

Amyloid β-peptide, the principal component of characteristic cerebral plaques of Alzheimer's disease (AD), is produced through intramembrane proteolysis of the amyloid precursor protein (APP) by γ-secretase. Despite the importance in the pathogenesis of AD, the mechanisms of intramembrane proteolysis and substrate processing by γ-secretase remain poorly understood. Here, complementary all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method and biochemical experiments were combined to investigate substrate processing of wildtype and mutant APP by γ-secretase.

View Article and Find Full Text PDF

γ-Secretase is a membrane-embedded aspartyl protease complex central in biology and medicine. How this enzyme recognizes transmembrane substrates and catalyzes hydrolysis in the lipid bilayer is unclear. Inhibitors that mimic the entire substrate transmembrane domain and engage the active site should provide important tools for structural biology, yielding insight into substrate gating and trapping the protease in the active state.

View Article and Find Full Text PDF

γ-Secretase is a membrane-embedded aspartyl protease complex with presenilin as the catalytic component that cleaves within the transmembrane domain (TMD) of >90 known substrates, including the amyloid precursor protein (APP) of Alzheimer's disease. Processing by γ-secretase of the APP TMD produces the amyloid β-peptide (Aβ), including the 42-residue variant (Aβ42) that pathologically deposits in the Alzheimer brain. Complex proteolysis of APP substrate by γ-secretase involves initial endoproteolysis and subsequent carboxypeptidase trimming, resulting in two pathways of Aβ production: Aβ49 → Aβ46 → Aβ43 → Aβ40 and Aβ48 → Aβ45 → Aβ42 → Aβ38.

View Article and Find Full Text PDF

Pleckstrin homology (PH) domains are well-known as phospholipid binding modules, yet evidence that PH domain function extends beyond lipid recognition is mounting. In this work, we characterize a protein binding function for the PH domain of interleukin-2-inducible tyrosine kinase (ITK), an immune cell specific signaling protein that belongs to the TEC family of nonreceptor tyrosine kinases. Its N-terminal PH domain is a well-characterized lipid binding module that localizes ITK to the membrane via phosphatidylinositol 3,4,5-trisphosphate (PIP) binding.

View Article and Find Full Text PDF

Activation of the phospholipase, PLCγ1, is critical for proper T cell signaling following antigen receptor engagement. In T cells, the Tec family kinase, interleukin-2-induced tyrosine kinase (ITK), phosphorylates PLCγ1 at tyrosine 783 (Y783) leading to activation of phospholipase function and subsequent production of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. In this work, we demonstrate that PLCγ1 can be primed for ITK-mediated phosphorylation on Y783 by a specific region of the adaptor protein, SLP-76.

View Article and Find Full Text PDF