Publications by authors named "Suiran Yu"

Objective: Electronic medical records (EMRs) contain patients' medical and health information. The Utilization of EMRs for assisted diagnosis is of significant importance for the rehabilitation of spinal cord injury (SCI) patients. Therefore, this study proposes a decision-making model for rehabilitation programs of SCI patients based on EMRs.

View Article and Find Full Text PDF

Virtual reality (VR) technology has experienced a steady rise and has been widely applied in the field of rehabilitation. The integration of VR technology in rehabilitation has shown promising results in enhancing their motivation for treatment, thereby enabling patients to actively engage in rehab training. Despite the advancement, there is a dearth of comprehensive summary and analysis on the use of VR technology to enhance patient motivation in rehabilitation.

View Article and Find Full Text PDF

Virtual reality (VR) Rehabilitation holds the potential to address the challenge that patients feel bored and give up long-term rehabilitation training. Despite the introduction of gaming elements by some researchers in rehabilitation training to enhance engagement, there remains a notable lack of in-depth research on VR rehabilitation serious game design methods, particularly the absence of a concrete design framework for VR rehabilitation serious games. Hence, we introduce the Clinical-Function-Interesting (CFI): a VR rehabilitation serious game design framework, harmonizing rehabilitation function and game design theories.

View Article and Find Full Text PDF

Anatomical landmark trajectories are commonly used to define joint coordinate systems in human kinematic analysis according to standards proposed by the International Society of Biomechanics (ISB). However, most inertial motion capture (IMC) studies focus only on joint angle measurement, which limits its application. Therefore, this paper proposes a new method to calculate the trajectories of anatomical landmarks based on IMC data.

View Article and Find Full Text PDF

Posterosuperior rotator cuff tear (PSRCT) is one of the most common shoulder disorders in elderly people's daily life; however, the biomechanical relationship between PSRCT and shoulder abduction function is still controversial. In this study, a total of twelve freshly frozen cadaveric shoulders were included and tested in five conditions: intact rotator cuff, 1/3 PSRCT, 2/3 PSRCT, entire PSRCT, and global RCT. In each condition, extra load (0%, 45%, and 90% failure load) was sequentially added to the distal humerus, and the function of the remaining rotator cuff was mainly evaluated the middle deltoid force (MDF) required for abduction.

View Article and Find Full Text PDF

Purpose: To examine the biomechanical properties governing posterosuperior rotator cuff (RC) tear progression and dynamic shoulder abduction function, in the absence of excess loading.

Methods: Twelve freshly frozen cadaveric shoulders were evaluated via an established dynamic shoulder abduction stimulator. The shoulder abduction functions were primarily evaluated using subacromial contact pressure (SACP) during an abduction procedure, and subsequent middle deltoid force (MDF) under 5 conditions: (1) intact, (2) anterior 1/3 posterosuperior rotator cuff (PSRC) tear, (3) anterior 2/3 PSRC tear, (4) entire PSRC tear, and (5) global RC tear (tear involving the entire superior RC).

View Article and Find Full Text PDF

Purpose: To examine the biomechanical differences between labral repair with transferred conjoined tendon and transferred long head of the biceps tendon (LHBT) for anterior shoulder instability with 20% bone loss.

Methods: Twelve cadaveric shoulders were tested in sequent 5 conditions: intact, 20% glenoid defect, Bankart repair, Bankart repair with transferred conjoined tendon (dynamic conjoined tendon sling, DCS), and with transferred LHBT (dynamic LHBT sling, DLS) at 60° of glenohumeral abduction and 60° of external rotation. The physiological glenohumeral joint load was created by forces applied to the rotator cuff, conjoined tendon, and LHBT.

View Article and Find Full Text PDF

Purpose: To biomechanically compare the dynamic double-sling with single-sling augmentation using the conjoined tendon (CT) with 20% of an anteroinferior glenoid bone defect under the high loads in shoulders.

Methods: With the shoulder in 60° of glenohumeral abduction and 60° of external rotation, the 12 shoulders stability was tested sequentially in 5 conditions: intact, 20% glenoid bone loss, Bankart repair, single-sling augmentation with the CT, and double-sling augmentation with both the CT and long head of the biceps tendon (LHBT). The anteroinferior humeral head (HH) translation force of 20N, 30N, 40N, 50N, or 60N was applied to determine the shoulder stability in each condition.

View Article and Find Full Text PDF