To achieve multifunctional properties using nanocomposites, selectively locating nanofillers in specific areas by tailoring a mixture of two immiscible polymers has been widely investigated. Forming a phase-separated structure from entirely miscible molecules is rarely reported, and the related mechanisms to govern the formation of assemblies from molecules have not been fully resolved. In this work, a novel method and the underlying mechanism to fabricate self-assembling, bicontinuous, biphasic structures with localized domains made up of amine-functionalized graphene nanoplatelets are presented, involving the tailoring of compositions in a liquid processable multicomponent epoxy blend.
View Article and Find Full Text PDFBy incorporating 1-(2-aminoethyl)piperazine (AEPIP) into a commercial epoxy blend, a bicontinuous microstructure is produced with the selective localization of amine-functionalized graphene nanoplatelets (A-GNPs). This cured blend underwent self-assembly, and the morphology and topology were observed spectral imaging techniques. As the selective localization of nanofillers in thermoset blends is rarely achieved, and the mechanism remains largely unknown, the optical photothermal infrared (O-PTIR) spectroscopy technique was employed to identify the compositions of microdomains.
View Article and Find Full Text PDFIn order to increase the material throughput of aligned discontinuous fibre composites using technologies such as HiPerDiF, stability of the carbon fibres in an aqueous solution needs to be achieved. Subsequently, a range of surfactants, typically employed to disperse carbon-based materials, have been assessed to determine the most appropriate for use in this regard. The optimum stability of the discontinuous fibres was observed when using the anionic surfactant, sodium dodecylbenzene sulphonate, which was superior to a range of other non-ionic and anionic surfactants, and single-fibre fragmentation demonstrated that the employment of sodium dodecylbenzene sulphonate did not affect the interfacial adhesion between fibres.
View Article and Find Full Text PDF