Objectives: Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins.
Methods: A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer.
Objectives: To investigate the association between emphysema heterogeneity in spatial distribution, pulmonary function and disease severity.
Methods And Materials: We ascertained a dataset of anonymized Computed Tomography (CT) examinations acquired on 565 participants in a COPD study. Subjects with chronic bronchitis (CB) and/or bronchodilator response were excluded resulting in 190 cases without COPD and 160 cases with COPD.
Purpose: A novel algorithm is presented to automatically identify the retinal vessels depicted in color fundus photographs.
Methods: The proposed algorithm quantifies the contrast of each pixel in retinal images at multiple scales and fuses the resulting consequent contrast images in a progressive manner by leveraging their spatial difference and continuity. The multiscale strategy is to deal with the variety of retinal vessels in width, intensity, resolution, and orientation; and the progressive fusion is to combine consequent images and meanwhile avoid a sudden fusion of image noise and/or artifacts in space.
Purpose: To investigate whether the integrity (completeness) of pulmonary fissures affects pulmonary function in patients with chronic obstructive pulmonary disease (COPD).
Materials And Methods: A dataset consisting of 573 CT exams acquired on different subjects was collected from a COPD study. According to the global initiative for chronic obstructive lung disease (GOLD) criteria, these subjects (examinations) were classified into five different subgroups, namely non-COPD (222 subjects), GOLD-I (83 subjects), GOLD-II (141 subjects), GOLD-III (63 subjects), and GOLD-IV (64 subjects), in terms of disease severity.
To investigate whether lung function in patients with chronic obstructive pulmonary disease (COPD) can be directly predicted using CT densitometric measures and assess the underlying prediction errors as compared with the traditional spirometry-based measures. A total of 600 CT examinations were collected from a COPD study. In addition to the entire lung volume, the extent of emphysema depicted in each CT examination was quantified using density mask analysis (densitometry).
View Article and Find Full Text PDFComput Med Imaging Graph
June 2014
A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST).
View Article and Find Full Text PDFObjective: To investigate the collapsibility of the lung and individual lobes in patients with COPD during inspiration/expiration and assess the association of whole lung and lobar volume changes with pulmonary function tests (PFTs) and disease severity.
Methods: PFT measures used were RV/TLC%, FEV1% predicted, FVC, FEV1/FVC%, DLco% predicted and GOLD category. A total of 360 paired inspiratory and expiratory CT examinations acquired in 180 subjects were analysed.
Airway diseases (e.g., asthma, emphysema, and chronic bronchitis) are extremely common worldwide.
View Article and Find Full Text PDFObjectives: To determine the optimal threshold by quantitatively assessing the extent of emphysema at the level of the entire lung and at the level of individual lobes using a large, diverse dataset of computed tomography (CT) examinations.
Methods: This study comprises 573 chest CT examinations acquired from subjects with different levels of airway obstruction (222 none, 83 mild, 141 moderate, 63 severe and 64 very severe). The extent of emphysema was quantified using the percentage of the low attenuation area (LAA%) divided by the total lung or lobe volume(s).
Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors.
View Article and Find Full Text PDFComput Med Imaging Graph
October 2012
We describe an automated computerized scheme to identify pulmonary fissures depicted in chest computed tomography (CT) examinations from a novel perspective. Whereas CT images can be regarded as a cloud of points, the underlying idea is to search for surface-like structures in the three-dimensional (3D) Euclidean space by using an efficient plane fitting algorithm. The proposed plane fitting operation is performed in a number of small spherical lung sub-volumes to detect small planar patches.
View Article and Find Full Text PDFAs one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis.
View Article and Find Full Text PDFPurpose: The primary aim of this study is to investigate the performance difference of rigid and nonrigid registration schemes in matching corresponding pulmonary nodules depicted on sequential chest computed tomography (CT) examinations.
Methods: A gradient descent based rigid registration algorithm with scaling was developed and it handled the involved geometric transformations (i.e.