Publications by authors named "SuiPing Zheng"

Article Synopsis
  • Rebaudioside M (Reb M) is a zero-calorie sweetener with production issues due to its low yield and purity when synthesized from rebaudioside D (Reb D).
  • Researchers identified a modified enzyme variant (UGT76G1-L200A/L379M) that improved catalytic efficiency by ten times compared to the original enzyme, allowing for a higher yield of Reb M.
  • The study also revealed that molecular interactions in the modified enzyme contribute to this enhanced efficiency, showcasing a new approach in protein engineering for better enzymatic performance.
View Article and Find Full Text PDF

Hydroxytyrosol has been proven beneficial to human health. However, the process involving the conversion of L-DOPA to 3,4-dihydroxyphenylacetaldehyde (3,4-DHPAA) in hydroxytyrosol biosynthesis typically required the simultaneous use of decarboxylase and oxidative deaminase. In addition, phenylacetaldehyde reductase from Solanum lycopersicum (SlPAR) in hydroxytyrosol biosynthesis exhibits poor thermal stability.

View Article and Find Full Text PDF

Laccases are extensively used in the textile industry due to their ability to decolorize dyes, modify fabric surfaces, and bleach textiles. Identifying a laccase with both high thermal stability and alkali tolerance suitable for textile applications presents a significant challenge. A novel alkaline laccase, LacCT, was discovered from Caldalkalibacillus thermarum and successfully expressed it in Escherichia coli.

View Article and Find Full Text PDF

IMP (inosinic acid) is a crucial intermediate in the purine metabolic pathway and is continuously synthesized in all cells. Besides its role as a precursor for DNA and RNA, IMP also plays a critical or essential role in cell growth, energy storage, conversion, and metabolism. In our study, we utilized the circularly permuted fluorescent protein (cpFP) and IMP dehydrogenase to screen and develop the IMP biosensor, IMPCP1.

View Article and Find Full Text PDF

is regarded as an industrially important microbial cell factory and is widely used to produce various value-added chemicals. Because of the importance of . applications, current research is increasingly focusing on developing synthetic biology platforms.

View Article and Find Full Text PDF

D-allulose is one sort of C-3 epimer of D-fructose with the low calorie (0.4 kcal/g) and high sweetness (70% of the relative sweetness of sucrose), which can be biosynthesized by D-allulose-3-epimerase (DAE). In this work, we report the characterization of a novel DAE from (RpDAE) by genome mining approach.

View Article and Find Full Text PDF

Malachite green oxalate (MG) is a kind of veterinary drug, which is freely soluble in water and hazardous to aquatic products, resulting in food toxicity and human health problems. The demand for effective and sensitive detection of MG residues is increasing in food safety. In this work, three DNA aptamers MG-36-12/16/17 targeting MG with good affinity (K values were 169.

View Article and Find Full Text PDF

In the genus , AmtR is a key component of the nitrogen regulatory system, and it belongs to the TetR family of transcription regulators. There has been much research on AmtR structure, functions, and regulons in the type strain ATCC 13032, but little research in other strains. In this study, chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq) was performed to identify the AmtR regulon in ATCC 14067.

View Article and Find Full Text PDF

The display of recombinant proteins on the surfaces of bacteria is a research topic with many possible biotechnology applications-among which, the choice of host cell and anchoring motif is the key for efficient display. is a promising host for surface display due to its natural advantages, while single screening methods and fewer anchor proteins restrict its application. In this study, the subcellular localization (SCL) predictor LocateP and tied-mixture hidden Markov models were used to analyze all five known endogenous anchor proteins of and test the accuracy of the predictions.

View Article and Find Full Text PDF

The fermentation production of platform chemicals in biorefineries is a sustainable alternative to the current petroleum refining process. The natural advantages of Corynebacterium glutamicum in carbon metabolism have led to C. glutamicum being used as a microbial cell factory that can use various biomass to produce value-added platform chemicals and polymers.

View Article and Find Full Text PDF

Diamines serve as major platform chemicals that can be employed to a variety of industrial scenarios, particularly as monomers for polymer synthesis. High-throughput sensors for diamine biosynthesis can greatly improve the biological production of diamines. Here, we identified and characterized a transcription factor-driven biosensor for putrescine and cadaverine in .

View Article and Find Full Text PDF

The modification of intracellular metabolic pathways by metabolic engineering has generated many engineered strains with relatively high yields of various target products in the past few decades. However, the unpredictable accumulation of toxic products, the cell membrane barrier, and competition between the carbon flux of cell growth and product synthesis have severely retarded progress toward the industrial-scale production of many essential chemicals. On the basis of an in-depth understanding of intracellular metabolic pathways, scientists intend to explore more sustainable methods and construct a cell-free biosynthesis system in vitro.

View Article and Find Full Text PDF

The carotenoid, α-carotene, is very beneficial for human health and wellness, but microbial production of this compound is notoriously difficult, due to the asymmetric rings on either end of its terpenoid backbone. Here, we report for the first time the efficient production of α-carotene in the industrial bacterium Corynebaterium glutamicum by using a combined pathway engineering approach including evaluation of the performance of different cyclases and analysis of key metabolic intermediates to determine flux bottlenecks in the carotenoid biosynthesis pathway. A multi-copy chromosomal integration method was pivotal in achieving stable expression of the cyclases.

View Article and Find Full Text PDF

Objective: To explore the RecET-Cre/loxP system for chromosomal replacement of promoter and its application on enhancement L-leucine production in Corynebacterium glutamicum (C. glutamicum) ATCC14067.

Results:  The RecET-Cre/loxP system was used to achieve the chromosomal replacement of promoter in C.

View Article and Find Full Text PDF
Article Synopsis
  • Corynebacterium glutamicum is a vital industrial microorganism used for the production of valuable products, and there’s a need for effective gene editing methods to enhance its performance.
  • A novel multiplex gene editing technique using the CRISPR/Cpf1-RecT system was developed, achieving over 91.6% efficiency for editing multiple genes and effective large DNA fragment deletions.
  • This study highlights the potential of CRISPR/Cpf1 technology to streamline genetic modifications in C. glutamicum, offering new possibilities for metabolic engineering and genomic advancements.
View Article and Find Full Text PDF

Background: Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have diverse intrinsic functions in yeasts, and they also have different uses in vitro. In this study, the functions of potential GPI proteins in Pichia pastoris were explored by gene knockout approaches.

Results: Through an extensive knockout of GPI proteins in P.

View Article and Find Full Text PDF

Sodium dodecyl sulfate (SDS), a representative anionic surfactant, is a commonly used reagent in studies of the cell membrane and cell wall. However, the mechanisms through which SDS affects cellular functions have not yet been fully examined. Thus, to gain further insights into the cellular functions and responses to SDS, we tested a haploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify genes required for tolerance to SDS.

View Article and Find Full Text PDF

We screened a haploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify nonessential genes associated with increased sensitivity to or resistance against the cell wall antagonist calcofluor white. Through a genome-wide screen, we isolated 537 strains that had an altered growth rate relative to wild type, of which 485 showed increased sensitivity and 52 showed increased resistance to calcofluor white. The MAPK signaling pathway, N-glycan biosynthesis, endocytosis, vacuole acidification, autophagy, and the sulfur relay system were identified as being associated with calcofluor white sensitivity.

View Article and Find Full Text PDF

The 4S pathway of biodesulfurization, which can specifically desulfurize aromatic S-heterocyclic compounds without destroying their combustion value, is a low-cost and environmentally friendly technology that is complementary to hydrodesulfurization. The four Dsz enzymes convert the model compound dibenzothiophene (DBT) into the sulfur-free compound 2-hydroxybiphenyl (HBP). Of these four enzymes, DszC, the first enzyme in the 4S pathway, is the most severely affected by the feedback inhibition caused by HBP.

View Article and Find Full Text PDF

Corynebacterium glutamicum (C. glutamicum), an important industrial workhorse, is capable of efficiently producing a variety of value-added chemicals and fuels beyond amino acids. C.

View Article and Find Full Text PDF

Displaying Candida antarctica lipase B (CALB) on the cell surface of Aspergillus niger is effectively applied for the industries of food, cosmetics, pharmaceutical and so on. Displaying CALB using induced promoter of glucoamylase on the cell surface of A. niger SH-1 has some problems such as inhibiting its expression under high concentration of glucose, mycelium cleavage and decreasing enzyme activity in the later period of fermentation process.

View Article and Find Full Text PDF

In Pichia pastoris, most of the Glycosylphosphatidylinositol (GPI)-anchored proteins are of unknown function. Gcw13, one of these GPI-anchored proteins, was found to exert an inhibitory effect on the growth of the histidine auxotrophic P. pastoris strain GS115 on methanol as the sole carbon source.

View Article and Find Full Text PDF

FKS1 encodes a β-1,3-glucan synthase, which is a key player in cell wall assembly in Saccharomyces cerevisiae. Here we analyzed the global transcriptomic changes in the FKS1 mutant to establish a correlation between the changes in the cell wall of the FKS1 mutant and the molecular mechanism of cell wall maintenance. These transcriptomic profiles showed that there are 1151 differentially expressed genes (DEGs) in the FKS1 mutant.

View Article and Find Full Text PDF

Endoglucanase 1 (EG1) isolated from the straw mushroom has great potential in the textile and paper industries. Improving EG1 expression level will add to its value for industrial applications. In this study, we employed two combined strategies to enhance the expression quantity of EG1, which are increase the copy number of EG1 and enhance the folding and secretion efficiency of EG1 in the endoplasmic reticulum by overexpress HAC1.

View Article and Find Full Text PDF