Publications by authors named "Suhyung Cho"

Microbes have inherent capacities for utilizing various carbon sources, however they often exhibit sub-par fitness due to low metabolic efficiency. To test whether a bacterial strain can optimally utilize multiple carbon sources, Escherichia coli was serially evolved in L-lactate and glycerol. This yielded two end-point strains that evolved first in L-lactate then in glycerol, and vice versa.

View Article and Find Full Text PDF

Advances in systems and synthetic biology have propelled the construction of reduced bacterial genomes. Genome reduction was initially focused on exploring properties of minimal genomes, but more recently it has been deployed as an engineering strategy to enhance strain performance. This review provides the latest updates on reduced genomes, focusing on dual-track approaches of top-down reduction and bottom-up synthesis for their construction.

View Article and Find Full Text PDF

Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO) into multicarbon biochemicals.

View Article and Find Full Text PDF

Adaptive laboratory evolution (ALE) has long been used as the tool of choice for microbial engineering applications, ranging from the production of commodity chemicals to the innovation of complex phenotypes. With the advent of systems and synthetic biology, the ALE experimental design has become increasingly sophisticated. For instance, implementation of metabolic model reconstruction and advanced synthetic biology tools have facilitated the effective coupling of desired traits to adaptive phenotypes.

View Article and Find Full Text PDF

The massive sequencing of transposon insertion mutant libraries (Tn-Seq) represents a commonly used method to determine essential genes in bacteria. Using a hypersaturated transposon mutant library consisting of 400,096 unique Tn insertions, 523 genes were classified as essential in Escherichia coli K-12 MG1655. This provided a useful genome-wide gene essentiality landscape for rapidly identifying 233 of 301 essential genes previously validated by a knockout study.

View Article and Find Full Text PDF

The gut microbiota is associated with the health and longevity of the host. A few methods, such as fecal microbiota transplantation and oral administration of probiotics, have been applied to alter the gut microbiome and promote healthy aging. The changes in host microbiomes still remain poorly understood.

View Article and Find Full Text PDF

A marine phytoplankton dinoflagellate, Alexandrium sp. is known to cause worldwide harmful algal blooms, resulting in paralytic shellfish poisoning. In this study, we isolated a novel compound secreted by the marine bacterium Pseudoruegeria sp.

View Article and Find Full Text PDF

With a presence of the Wood-Ljungdahl pathway, acetogenic bacteria are capable of converting C1 feedstocks into biomass and various metabolites, receiving industrial interest in microbial production of biochemicals derived from C1 substrates. To understand C1 feedstock fermentation using acetogenic bacteria, most of the studies have focused on revealing their carbon assimilation and energy conservation systems. Despite the determination of the essential mechanisms, a fundamental understanding of acetogenic bacteria and the associated complex regulatory systems remains unclear and is needed for rational strain design.

View Article and Find Full Text PDF

Acetogenic bacteria demonstrate industrial potential for utilizing carbon dioxide (CO) for biochemical production using the Wood-Ljungdahl pathway. However, the metabolic engineering of acetogenic bacteria has been hampered by the limited number of available genetic bioparts for gene expression. Here, we integrated RNA sequencing, ribosome profiling, differential RNA sequencing, and RNA 3'-end sequencing results of Eubacterium limosum to establish genetic bioparts, such as promoters, 5' untranslated regions, and transcript terminators, to regulate transcriptional and translational expression of genes composing of biosynthetic pathways.

View Article and Find Full Text PDF

As the design of genetic circuitry for synthetic biology becomes more sophisticated, diverse regulatory bioparts are required. Despite their importance, well-characterized 3'-untranslated region (3'-UTR) bioparts are limited. Thus, transcript 3'-ends require further investigation to understand the underlying regulatory role and applications of the 3'-UTR.

View Article and Find Full Text PDF

Background: The gram-positive bacterium, Streptomyces avermitilis, holds industrial importance as the producer of avermectin, a widely used anthelmintic agent, and a heterologous expression host of secondary metabolite-biosynthetic gene clusters. Despite its industrial importance, S. avermitilis' genome organization and regulation of gene expression remain poorly understood.

View Article and Find Full Text PDF

Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features.

View Article and Find Full Text PDF

Background: The gut microbiota is associated with diverse age-related disorders. Several rejuvenation methods, such as probiotic administration and faecal microbiota transplantation, have been applied to alter the gut microbiome and promote healthy ageing. Nevertheless, prolongation of the health span of aged mice by remodelling the gut microbiome remains challenging.

View Article and Find Full Text PDF

species have attracted considerable interest as a reservoir of medically important secondary metabolites, which are even diverse and different between strains. Here, we reassess ten strains by presenting the highly resolved classification, using 16S rRNA sequencing, MALDI-TOF MS protein profiling, and whole-genome sequencing. The results revealed that seven of the ten strains were misclassified as .

View Article and Find Full Text PDF

Cyanobacteria are promising industrial platforms owing to their ability to produce diverse natural secondary metabolites and nonnative value-added biochemicals from CO and light. To fully utilize their industrial potency, it is critical to understand their photosynthetic efficiency under various environmental conditions. In this study, we elucidated the inhibitory mechanisms of photosynthesis under high-light and low-temperature stress conditions in the model cyanobacterium sp.

View Article and Find Full Text PDF

The microbial conversion of glycerol into value-added commodity products has emerged as an attractive means to meet the demands of biosustainability. However, glycerol is a non-preferential carbon source for productive fermentation because of its low energy density. We employed evolutionary and metabolic engineering in tandem to construct an Escherichia coli strain with improved GABA production using glycerol as the feedstock carbon.

View Article and Find Full Text PDF

RNA sequencing techniques have enabled the systematic elucidation of gene expression (RNA-Seq), transcription start sites (differential RNA-Seq), transcript 3' ends (Term-Seq), and post-transcriptional processes (ribosome profiling). The main challenge of transcriptomic studies is to remove ribosomal RNAs (rRNAs), which comprise more than 90% of the total RNA in a cell. Here, we report a low-cost and robust bacterial rRNA depletion method, RiboRid, based on the enzymatic degradation of rRNA by thermostable RNase H.

View Article and Find Full Text PDF

Acetogens synthesize acetyl-CoA via the CO-fixing Wood-Ljungdahl pathway. Despite their ecological and biotechnological importance, their translational regulation of carbon and energy metabolisms remains unclear. Here, we report how carbon and energy metabolisms in the model acetogen Acetobacterium woodii are translationally controlled under different growth conditions.

View Article and Find Full Text PDF

Cyanobacteria are considered as promising microbial cell factories producing a wide array of bio-products. Among them, sp. PCC 7338 has the advantage of growing in seawater, rather than requiring arable land or freshwater.

View Article and Find Full Text PDF

The market for using and storing digital data is growing, with DNA synthesis emerging as an efficient way to store massive amounts of data. Storing information in DNA mainly consists of two steps: data writing and reading. The writing step requires encoding data in DNA, building one nucleotide at a time as a form of single-stranded DNA (ssDNA).

View Article and Find Full Text PDF

Identification of transcriptional regulatory elements in the GC-rich genome is essential for the production of novel biochemicals from secondary metabolite biosynthetic gene clusters (smBGCs). Despite many efforts to understand the regulation of transcription initiation in smBGCs, information on the regulation of transcription termination and posttranscriptional processing remains scarce. In this study, we identified the transcriptional regulatory elements in β-lactam antibiotic-producing ATCC 27064 by determining a total of 1,427 transcript 3'-end positions (TEPs) using the term-seq method.

View Article and Find Full Text PDF

Actinomycetes are a rich source of bioactive natural products important for novel drug leads. Recent genome mining approaches have revealed an enormous number of secondary metabolite biosynthetic gene clusters (smBGCs) in actinomycetes. However, under standard laboratory culture conditions, many smBGCs are silent or cryptic.

View Article and Find Full Text PDF

Acetogenic bacteria use cellular redox energy to convert CO to acetate using the Wood-Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen The hybrid system converts CO into acetate without the need for additional energy sources, such as H, and uses only light-induced electrons from CdS-NPs.

View Article and Find Full Text PDF

Acetogens are anaerobic bacteria that utilise gaseous feedstocks such as carbon monoxide (CO) and carbon dioxide (CO) to synthesise biomass and various metabolites via the energetically efficient Wood-Ljungdahl pathway. Because of this pathway, acetogens have been considered as a novel platform to produce biochemicals from gaseous feedstocks, potentially replacing the conventional thermochemical processes. Despite their advantages, a lack of systematic understanding of the transcriptional and translational regulation in acetogens during autotrophic growth limits the rational strain design to produce the desired products.

View Article and Find Full Text PDF