Publications by authors named "Suhwan Gwon"

Introduction: The mutated in colorectal cancer (MCC) gene was initially identified as a candidate tumor suppressor gene in colorectal cancer, acting as a negative regulator of cell cycle progression. However, its functional roles in brain tumors, particularly glioblastoma, remain largely unexplored. This study reveals a significant association between MCC status and glioblastoma.

View Article and Find Full Text PDF

Acyl‑coenzyme A thioesterases (ACOTs) are crucial in mediating lipid metabolic functions, including energy expenditure, hepatic gluconeogenesis and neuronal function. The two distinct types are type I and II ACOTs, the latter of which are 'hotdog' fold superfamily members. Type II ACOTs include carboxyl‑terminal modulator protein 1 (CTMP1), also termed thioesterase superfamily member 4 (THEM4), and CTMP2, also termed THEM5.

View Article and Find Full Text PDF

Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine muscle‑strengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR‑206 precursor in cell‑free (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy.

View Article and Find Full Text PDF

Muscular atrophy, which results in loss of muscle mass and strength, is a significant concern for patients with various diseases. It is crucial to comprehend the molecular mechanisms underlying this condition to devise targeted treatments. MicroRNAs (miRNAs) have emerged as key regulators of gene expression, serving vital roles in numerous cellular processes, including the maintenance of muscle stability.

View Article and Find Full Text PDF

Scavenger Receptor Class F Member 2 (), also known as the Type F Scavenger Receptor Family gene, encodes for Scavenger Receptor Expressed by Endothelial Cells 2 (SREC-II). This protein is a crucial component of the scavenger receptor family and is vital in protecting mammals from infectious diseases. Although research on SCARF2 is limited, mutations in this protein have been shown to cause skeletal abnormalities in both SCARF2-deficient mice and individuals with Van den Ende-Gupta syndrome (VDEGS), which is also associated with SCARF2 mutations.

View Article and Find Full Text PDF