Publications by authors named "Suhui Luo"

Accumulating evidence has demonstrated that medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively affect cognitive function. However, it remains unclear whether the improvement is related to the alterations of gut microbiota and inflammation and the impact of the combined intervention. In this study, we hypothesized that the supplementation of MCTs combined with DHA could modulate gut microbiota, inflammation, and improve cognitive function in APPswe/PS1De9 model mice and senescence-accelerated mouse-prone-8, which are two different mouse models used in neurodegeneration research.

View Article and Find Full Text PDF

Total cholesterol (TC) and the cholesterol oxidation product 27-hydroxycholesterol (27-OHC) are both increased in the elderly. Accumulating evidence has linked 27-OHC to glucose metabolism in the brain, while docosahexaenoic acid (DHA) has been shown to positively regulate the 27-OHC levels. However, it is unclear whether DHA may affect glucose metabolism in the brain by regulating 27-OHC levels.

View Article and Find Full Text PDF

The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer's disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear.

View Article and Find Full Text PDF

Folic acid (FA) could improve cognitive performance and attenuate brain cell injury in the aging brain; FA supplementation is also associated with inhibiting neural stem cell (NSC) apoptosis. However, its role in age-associated telomere attrition remains unclear. We hypothesized that FA supplementation attenuates age-associated apoptosis of NSCs in mice via alleviating telomere attrition in senescence-accelerated mouse prone 8 (SAMP8).

View Article and Find Full Text PDF

Aim: To demonstrate the role of IL-6 and pSTAT3 in the inflammatory response to cerebral ischemia/reperfusion following folic acid deficiency (FD).

Methods: The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in adult male Sprague-Dawley rats in vivo, and cultured primary astrocytes were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to emulate ischemia/reperfusion injury in vitro.

Results: Glial fibrillary acidic protein (GFAP) expression significantly increased in astrocytes of the brain cortex in the MCAO group compared to the SHAM group.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how nutrients related to one-carbon metabolism (OCM), such as folate, vitamin B, and homocysteine (Hcy), may mediate the link between a specific genetic variant (rs1801133 polymorphism) and gestational diabetes mellitus (GDM) in pregnant women.
  • The researchers analyzed serum samples from 1,254 pregnant women, finding that those with the CC genotype had higher folate and lower Hcy levels, and observed that folate levels were positively associated with blood glucose levels and GDM risk, while vitamin B levels had a negative correlation with these factors.
  • The results indicated that folate mediates the influence of the rs1801133 CC genotype on blood glucose levels
View Article and Find Full Text PDF

Folic acid, a water-soluble B-vitamin, has been demonstrated to decrease the risk of first stroke and improve its poor prognosis. However, the molecular mechanisms responsible for the beneficial effect of folic acid on recovery from ischemic insult remain largely unknown. Excessive activation of the N-methyl-d-aspartate receptors (NMDARs) has been shown to trigger synaptic dysfunction and excitotoxic neuronal death in ischemic brains.

View Article and Find Full Text PDF

Background: Post-stroke depression (PSD), the most frequent psychiatric complication following stroke, could have a negative impact on the recuperation of stroke patients. Hyperhomocysteinemia (HHCY) has been reported to be a modifiable risk factor of stroke.

Objective: The study tries to explore the effect of HHCY on PSD and the role of N-methyl-d-aspartate receptors (NMDARs)-mediated synaptic alterations.

View Article and Find Full Text PDF
Article Synopsis
  • Aging is the main cause of illness and death globally, and pyrroloquinoline quinone (PQQ), an antioxidant compound, has been shown to extend lifespan in model organisms, although the exact mechanisms are still unclear.
  • In experiments, PQQ increased the mean lifespan by 33.1% at a concentration of 1 mM, while also improving physical activity, reducing fat buildup, and lowering harmful reactive oxygen species.
  • The study suggests that PQQ's anti-aging effects might involve the insulin/IGF1 signaling pathway and autophagy, supported by increased expression of relevant genes and the activation of key transcription factors.
View Article and Find Full Text PDF

Disturbed deoxythymidine triphosphate biosynthesis due to the inhibition of thymidylate synthase (TS) can lead to uracil accumulation in DNA, eventually, lead to neurocytes apoptosis and cognitive decline. Folic acid supplementation delayed cognitive decline and neurodegeneration in senescence-accelerated mouse prone 8 (SAMP8). Whether folic acid, one of nutrition factor, the effect on the expression of TS is unknown.

View Article and Find Full Text PDF

Ischemic stroke represents a major cause of mortality worldwide. An elevated level of homocysteine (Hcy) is recognized as a powerful risk factor of ischemic stroke. We previously reported that Hcy induces cytotoxicity and proliferation inhibition in neural stem cells (NSCs) derived from the neonatal rat hippocampus in vitro.

View Article and Find Full Text PDF

Astaxanthin (AST), a xanthophyll belonging to the family of carotenoids, is a potent antioxidant. The effect of AST on longevity and its physiological and molecular mechanism are still unclear. In this study, we proved that AST could prolong the life span of .

View Article and Find Full Text PDF

Ischemic stroke remains one of the most common causes of death and disability worldwide. The stroke patients with an inadequate intake of folic acid tend to have increased brain injury and poorer prognosis. However, the precise mechanisms underlying the harmful effects of folic acid deficiency (FD) in ischemic stroke is still elusive.

View Article and Find Full Text PDF

Astrocytes are the most widely distributed cells in the brain, and astrocyte apoptosis may play an important role in the pathogenesis of neurodegenerative diseases. Folate is required for the normal development of the nervous system, but its effect on astrocyte apoptosis is unclear. In this study, we hypothesized that folic acid (the therapeutic form of folate) decreases astrocyte apoptosis by preventing oxidative stress-induced telomere attrition.

View Article and Find Full Text PDF

Proliferation of neural stem cells (NSCs) is required for development and repair in the nervous system. NSC amplification in vitro is a necessary step towards using NSC transplantation therapy to treat neurodegenerative diseases. Folic acid (FA) has been shown to act through DNA methyltransferase to stimulate NSC proliferation.

View Article and Find Full Text PDF

Mild to moderate hyperhomocysteinemia has been implicated in neurodevelopmental disorders and neurodegenerative diseases in human studies. Although the molecular mechanisms underlying the effects of homocysteine (Hcy) neurotoxicity on the nervous system are not yet fully understood, inhibition of neural stem cell (NSC) proliferation and alterations in DNA methylation may be involved. The aim of the present study was to characterize the effects of Hcy on DNA methylation in NSCs, and to explore how Hcy-induced changes in DNA methylation patterns affect NSC proliferation.

View Article and Find Full Text PDF

The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0-200 μmol/L) for 24, 48 or 72 h.

View Article and Find Full Text PDF

The present study investigated the roles of folic acid and DNA methyltransferases (DNMTs) in the differentiation of neural stem cells (NSCs). Neonatal rat NSCs were grown in suspended neurosphere cultures and identified by their expression of SOX2 protein and capacity for self-renewal. Then NSCs were assigned to five treatment groups for cell differentiation: control (folic acid-free differentiation medium), low folic acid (8 μg/mL), high folic acid (32 μg/mL), low folic acid and DNMT inhibitor zebularine (8 μg/mL folic acid and 150 nmol/mL zebularine), and high folic acid and zebularine (32 μg/mL folic acid and 150 nmol/mL zebularine).

View Article and Find Full Text PDF

The aim of the present study was to determine if the excitatory amino acid homocysteine (Hcy) alters ERK signaling and cell proliferation in fetal neural stem cells (NSCs) in vitro. NSCs were isolated from fetal rats and grown in serum-free suspension medium. The cells were identified as NSCs by their expression of immunoreactive Sox2.

View Article and Find Full Text PDF