Publications by authors named "Suhuan Dai"

Stemness and metastasis are the two main challenges in cancer therapy and are related to disease relapse post-treatment. They both have a strong correlation with chemoresistance and poor prognosis, ultimately leading to treatment failure. It has been reported that chemotherapy can induce stemness and metastasis in many cancer types, especially treatment with the chemotherapeutic agent doxorubicin (DOX) in breast cancer.

View Article and Find Full Text PDF

Background: Phototherapy is a potential new candidate for glioblastoma (GBM) treatment. However inadequate phototherapy due to stability of the photosensitizer and low target specificity induces the proliferation of neovascular endothelial cells for angiogenesis and causes poor prognosis.

Methods: In this study, we constructed c(RGDfk)-modified glycolipid-like micelles (cRGD-CSOSA) encapsulating indocyanine green (ICG) for dual-targeting neovascular endothelial cells and tumor cells, and cRGD-CSOSA/ICG mediated dual effect of PDT/PTT with NIR irradiation.

View Article and Find Full Text PDF

: Nano-carrier based combinational therapies for tumor cells hold great potential to improve the outcomes of patients. However, cancer associated fibroblasts (CAFs) in desmoplastic tumors and the derived pathological tumor stroma severely impede the access and sensitibity of tumor cells to antitumor therapies. Glycolipid-based polymeric micelles (GLPM) were developed to encapsulate an angiotensin II receptor I inhibitor (telmisartan, Tel) and a cytotoxic drug (doxorubicin, DOX) respectively, which could exert combinational antitumor efficacy by reprogramming tumor microenvironment to expose the vulnerability of internal tumor cells.

View Article and Find Full Text PDF

Responsive drug release in tumor mitochondria is a pre-requisite for mitochondria-targeted drug delivery systems to improve the efficacy of this promising therapeutic modality. To this end, a photothermal stimulation strategy for mitochondria-responsive drug release along with heat shock is developed to maximize the antitumor effects with minimal side effects. This strategy relies on mitochondrial-targeted delivery of doxorubicin (DOX) through a photothermal and lipophilic agent IR-780 iodide (IR780)-modified glycolipid conjugates (CSOSA), which can synergistically triggers high-level reactive oxygen species (ROS) to kill tumor cells.

View Article and Find Full Text PDF

The development of advanced gene delivery carriers with stimuli-responsive release manner for tumor therapeutics is desirable, since they can exclusively release the therapeutic gene via their structural changes in response to the specific stimuli of the target site. Moreover, interactions between macrophages and drug delivery systems (DDSs) seriously impair the treatment efficiency of DDSs, thus macrophages uptake inhibition would to some extent improve the intracellular uptake of DDSs in tumor cells. Herein, a PEGylated redox-responsive gene delivery system was developed for effective cancer therapy.

View Article and Find Full Text PDF

The critical process and step in achieving effective antitumor therapies is facilitating endosomal escape, which can enhance the intracellular target delivery of therapeutics. However, the normally adopted approaches tend to result in colloidal instability as a result of the inevitable interactions between the resulting positively charged surfaces of micelles and proteins in vivo. Herein, negatively charged surface shielded polymeric micelles, consisting of polymethylacrylamide derivatives and hydrophilic chitosan ( M = 18.

View Article and Find Full Text PDF

The existence of blood-brain barrier (BBB) greatly hindered the penetration and accumulation of chemotherapeutics into glioblastoma (GBM), accompany with poor therapeutic effects. The growth of GBM supervene the impairment of tight junctions (TJs); however, the pathogenesis of BBB breakdown in GBM is essentially poorly understood. This study found that vascular endothelial growth factor (VEGF) secreted by GBM cells plays an important role in increasing the permeability of BBB by disrupting endothelial tight junction proteins claudin-5 and thus gave doxorubicin (DOX)-loaded glycolipid-like nanoparticles (Ap-CSSA/DOX), an effective entrance to brain tumor region for GBM-targeting therapy.

View Article and Find Full Text PDF

Mitochondria, crucial regulators of inducing tumor cells apoptosis, can be treated as the prime target for tumor therapy. The selective and responsive release of proapoptotic therapeutics into mitochondria may notably improve antitumor efficiency. Herein, (4-Carboxybutyl) triphenylphosphonium bromide (CTPP), a lipophilic cation, was conjugated with glucolipid-like conjugates (CSOSA) to produce mitochondria-targeted conjugates (CTPP-CSOSA).

View Article and Find Full Text PDF