Developing eco-friendly formulations using waste cooking oil as renewable biomass is of great interest and commercial importance in the fuels and lubricant industry. This manuscript reports novel study on preparing a biolubricant formulations as WCO-1, WCO-2 and WCO-3 by blending the curcumin extracted soybean waste cooking oil in three different compositions viz 10%, 20%, 30% v/v with the mineral base oil N-150. Curcumin was extracted as a natural antioxidant in 0.
View Article and Find Full Text PDFDiketopiperazine natural products are structurally diverse and offer many biological activities. Cyclodipeptide synthases (CDPSs) were recently unveiled as a novel enzyme family that employs aminoacyl-tRNAs as substrates for 2,5-diketopiperazine assembly. Here, the Nocardiopsis sp.
View Article and Find Full Text PDFRibonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR.
View Article and Find Full Text PDFCorrection for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol.
View Article and Find Full Text PDFMarine actinomycete-derived natural products continue to inspire chemical and biological investigations. Nocardioazines A and B (3 and 4), from Nocardiopsis sp. CMB-M0232, are structurally unique alkaloids featuring a 2,5-diketopiperazine (DKP) core functionalized with indole C3-prenyl as well as indole C3- and N-methyl groups.
View Article and Find Full Text PDFCatecholate type enterobactin, a prototype siderophore, comprises 2,3-dihydroxybenzoic acid (2,3-DHBA) cyclically linked to serine in E. coli. The existence of iron-chelating ligands in humans is a recent discovery, however, the basic chemical interactions between 2,5-dihydroxybenzoic acid and Fe(III) ion remain poorly understood.
View Article and Find Full Text PDFAromatic prenyltransferases are an actively mined enzymatic class whose biosynthetic repertoire is growing. Indole prenyltransferases catalyze the formation of a diverse set of prenylated tryptophan and diketopiperazines, leading to the formation of fungal toxins with prolific biological activities. At a fundamental level, the mechanism of C4-prenylation of l-tryptophan recently has surfaced to engage a debate between a "direct" electrophilic alkylation mechanism (for wt DMATS and FgaPT2) versus an indole C3-C4 "Cope" rearrangement followed by rearomatization (for mutant FgaPT2).
View Article and Find Full Text PDFCompetition for iron influences host-pathogen interactions. Pathogens secrete small iron-binding moieties, siderophores, to acquire host iron. In response, the host secretes siderophore-binding proteins, such as lipocalin 24p3, which limit siderophore-mediated iron import into bacteria.
View Article and Find Full Text PDFTandem radical cyclization to vinylogous carbonates and carbamates is developed for a new, highly stereoselective synthesis of heterocyclic angular triquinanes. The strategy is also useful to gain access to oxa- and azatriquinanes, which incorporate the spiroindoline moiety. The method is further extended to the synthesis of lactone-bearing as well as uracil-fused angular triquinanes.
View Article and Find Full Text PDFIron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron.
View Article and Find Full Text PDF