Recent widespread connections of renewable energy resource (RESs) in place of fossil fuel supplies and the adoption of electrical vehicles in place of gasoline-powered vehicles have given birth to a number of new concerns. The control architecture of linked power networks now faces an increasingly pressing challenge: tie-line power fluctuations and reducing frequency deviations. Because of their nature and dependence on external circumstances, RESs are analogous to continually fluctuating power generators.
View Article and Find Full Text PDFIn this paper, we propose two different control strategies for the position control of the ball of the ball and beam system (BBS). The first control strategy uses the proportional integral derivative-second derivative with a proportional integrator PIDD2-PI. The second control strategy uses the tilt integral derivative with filter (TID-F).
View Article and Find Full Text PDFIn this paper, a modified form of the Proportional Integral Derivative (PID) controller known as the Integral- Proportional Derivative (I-PD) controller is developed for Automatic Generation Control (AGC) of the two-area multi-source Interconnected Power System (IPS). Fitness Dependent Optimizer (FDO) algorithm is employed for the optimization of proposed controller with various performance criteria including Integral of Absolute Error (IAE), Integral of Time multiplied Absolute Error (ITAE), Integral of Time multiplied Square Error (ITSE), and Integral Square Error (ISE). The effectiveness of the proposed approach has been assessed on a two-area network with individual source including gas, hydro and reheat thermal unit and then collectively with all three sources.
View Article and Find Full Text PDFWire ropes undergo a fretting fatigue condition when subjected to axial and bending loads. The fretting behavior of wires are classified as line contact and trellis point of contact. The experimental study on the fatigue of wire ropes indicates that most of the failure occurs due to high localized stresses at trellis point of contact.
View Article and Find Full Text PDFIn this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently.
View Article and Find Full Text PDFIn this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE).
View Article and Find Full Text PDFWe present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE) and its boundary conditions is formulated.
View Article and Find Full Text PDF