Publications by authors named "Suhasni Gopalakrishnan"

A chromosome 14 inversion was found in a patient who developed bone marrow aplasia following treatment with allogeneic chimeric antigen receptor (CAR) Tcells containing gene edits made with transcription activator-like effector nucleases (TALEN). TALEN editing sites were not involved at either breakpoint. Recombination signal sequences (RSSs) were found suggesting recombination-activating gene (RAG)-mediated activity.

View Article and Find Full Text PDF

The mechanoreceptive sensory hair cells in the inner ear are selectively vulnerable to numerous genetic and environmental insults. In mammals, hair cells lack regenerative capacity, and their death leads to permanent hearing loss and vestibular dysfunction. Their paucity and inaccessibility has limited the search for otoprotective and regenerative strategies.

View Article and Find Full Text PDF

An early event in skeletal joint development is the specification of articular chondrocytes at the joint surface. Articular chondrocytes are distinct in producing lower levels of cartilage matrix and not being replaced by bone, yet how they acquire these properties remains poorly understood. Here, we show that two members of the Iroquois transcriptional repressor family, Irx7 and Irx5a, function to block chondrocyte maturation at the developing hyoid joint of zebrafish.

View Article and Find Full Text PDF

Recent landmark studies have demonstrated the production of disease-relevant human cell types by two different methods; differentiation of stem cells using external morphogens or lineage conversion using genetic factors. Directed differentiation changes embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) into a desired cell type by providing developmental cues in an in vitro environment. Direct reprogramming is achieved by the introduction of exogenous lineage specific transcription factors to convert any somatic cell type into another, thereby bypassing an intermediate pluripotent stage.

View Article and Find Full Text PDF

The assembly and expression of mouse Ag receptor genes are controlled by a collection of cis-acting regulatory elements, including transcriptional promoters and enhancers. Although many powerful enhancers have been identified for Ig (Ig) and TCR (Tcr) loci, it remained unclear whether additional regulatory elements remain undiscovered. In this study, we use chromatin profiling of pro-B cells to define 38 epigenetic states in mouse Ag receptor loci, each of which reflects a distinct regulatory potential.

View Article and Find Full Text PDF

The primary antigen receptor repertoire is sculpted by the process of V(D)J recombination, which must strike a balance between diversification and favoring gene segments with specialized functions. The precise determinants of how often gene segments are chosen to complete variable region coding exons remain elusive. We quantified Vβ use in the preselection Tcrb repertoire and report relative contributions of 13 distinct features that may shape their recombination efficiencies, including transcription, chromatin environment, spatial proximity to their DβJβ targets, and predicted quality of recombination signal sequences (RSSs).

View Article and Find Full Text PDF

DNA methylation is an epigenetic mark essential for mammalian development, genomic stability, and imprinting. DNA methylation patterns are established and maintained by three DNA methyltransferases: DNMT1, DNMT3A, and DNMT3B. Interestingly, all three DNMTs make use of alternative splicing.

View Article and Find Full Text PDF

DNA methylation is an epigenetically imposed mark of transcriptional repression that is essential for maintenance of chromatin structure and genomic stability. Genome-wide methylation patterns are mediated by the combined action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B. Compelling links exist between DNMT3B and chromosome stability as emphasized by the mitotic defects that are a hallmark of ICF syndrome, a disease arising from germline mutations in DNMT3B.

View Article and Find Full Text PDF

DNA methylation is a heritable and stable epigenetic mark associated with transcriptional repression. Changes in the patterns and levels of global and regional DNA methylation regulate development and contribute directly to disease states such as cancer. Recent findings provide intriguing insights into the epigenetic crosstalk between DNA methylation, histone modifications, and small interfering RNAs in the control of cell development and carcinogenesis.

View Article and Find Full Text PDF

DNA hypermethylation-mediated gene silencing is a frequent and early contributor to aberrant cell growth and invasion in cancer. Malignant gliomas are the most common primary brain tumors in adults and the second most common tumor in children. Morbidity and mortality are high in glioma patients because tumors are resistant to treatment and are highly invasive into surrounding brain tissue rendering complete surgical resection impossible.

View Article and Find Full Text PDF