Although hydroxypropyl methylcellulose acetate succinate (HPMCAS) has been widely used as a carrier for amorphous solid dispersion of poorly water-soluble drugs, its application has mostly been limited to spray drying, and the solvent-free method of hot melt extrusion has rarely been used. This is on account of the high temperature (≥170°C) required for extrusion where the polymer and even a drug may degrade. In part 1 of this series of papers, we demonstrated that HPMCAS is miscible with surfactants such as, poloxamer 188, poloxamer 407 and d-alpha tocopheryl polyethylene glycol 1000 succinate, which may also serve as plasticizers (Solanki et al.
View Article and Find Full Text PDFHydroxypropyl methylcellulose acetate succinate (HPMCAS) has been widely investigated as a carrier for amorphous solid dispersion (ASD) of poorly water-soluble drugs. However, its use has mostly been limited to ASDs prepared by spray drying using organic solvents, and the solvent-free method, hot-melt extrusion (HME), has only limited use because it requires high processing temperature where the polymer and drug may degrade. In this investigation, surfactants were used as plasticizers to reduce the processing temperature.
View Article and Find Full Text PDFVarious polyoxylglycerides have been researched extensively in the development of solid dispersions (SDs) for bioavailability enhancement of poorly water-soluble drugs. However, because of their low melting points (40°C-60°C), SDs produced are usually soft and semisolid. The objective of present study was to prepare SDs of a Biopharmaceutical Classification System class II drug, carvedilol, in mixtures of stearoyl polyoxylglycerides (Acconon C-50; m.
View Article and Find Full Text PDFSurfactants are commonly incorporated in conventional and enabled formulations to enhance the rate and extent of dissolution of drugs exhibiting poor aqueous solubility. Generally the interactions between the drug and excipients are systematically evaluated, however, limited attention is paid towards understanding the effect of interaction between functional excipients and its impact on the performance of the product. In the current study, the effect of potential interaction between a nonionic polymer binder, povidone, and anionic surfactant docusate sodium on the rate and extent of dissolution of a drug exhibiting poor aqueous solubility was evaluated by varying the proportions of the binder and the surfactant in the formulation.
View Article and Find Full Text PDFPurpose: Lipid-based self-emulsifying drug delivery systems (SEDDS) are usually liquids, and they can be converted into solid dosage forms by adsorbing onto silicates. However, most commercially available silicates are mesoporous with small pore sizes of 1 to 50nm that lead to incomplete emulsification of SEDDS inside the pores and thus incomplete drug release. The objective of this study was to investigate the impact of silica pore size on the extent of drug release from SEDDS solidified by adsorbing onto macroporous silicas with different pore sizes.
View Article and Find Full Text PDFAdsorption of lipid-based formulations, which are usually liquid, onto silicas has been extensively investigated in the past decade to convert them into solid dosage forms. There are conflicting reports on the ability of commercially available porous silicas, like Neusilin US2, to release lipid formulations completely, especially after long-term storage. In this study, the release of a model drug, probucol, from different formulations of medium chain lipids and a surfactant, Kolliphor EL (Cremophor EL) or polysorbate 80, were studied after adsorbing them onto Neusilin US2.
View Article and Find Full Text PDFIn a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied.
View Article and Find Full Text PDFPurpose: To compare six commonly available silicates for their suitability to develop tablets by adsorbing components of liquid lipid-based drug delivery systems.
Methods: The tabletability of Aerosil® 200, Sipernat® 22, Sylysia® 350, Zeopharm® 600, Neusilin® US2 and Neusilin® UFL2 were studied by compressing each silicate into tablets in the presence of 20% microcrystalline cellulose and measuring the tensile strength of tablets produced. Three components of lipid based formulations, namely, Capmul® MCM EP (glycerol monocaprylocaprate), Captex® 355 EP/NF (caprylic/capric triglycerides) and Cremophor® EL (PEG-35 castor oil), were adsorbed individually onto the silicates at 1:1 w/w, and the mixtures were then compressed into tablets.
Purpose: To develop tablet formulations by adsorbing liquid self-emulsifying drug delivery systems (SEDDS) onto Neusilin®US2, a porous silicate.
Methods: Nine SEDDS were prepared by combining a medium chain monoglyceride, Capmul MCM EP, a medium chain triglyceride, Captex 355 EP/NF, or their mixtures with a surfactant Cremophor EL, and a model drug, probucol, was then dissolved. The solutions were directly adsorbed onto Neusilin®US2 at 1:1 w/w ratio.