Publications by authors named "Suhani Vora"

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins offer a breakthrough platform for cheap, programmable, and effective sequence-specific DNA targeting. The CRISPR-Cas system is naturally equipped for targeted DNA cutting through its native nuclease activity. As such, groups researching a broad spectrum of biological organisms have quickly adopted the technology with groundbreaking applications to genomic sequence editing in over 20 different species.

View Article and Find Full Text PDF

Many microbial ecology experiments use sequencing data to measure a community's response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples.

View Article and Find Full Text PDF

We demonstrate that by altering the length of Cas9-associated guide RNA (gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.

View Article and Find Full Text PDF
Article Synopsis
  • The Cas9 protein, originally a nuclease, can be modified to act as a programmable transcription factor, although its initial effectiveness for gene activation was limited.
  • Researchers developed a more effective transcriptional regulator by combining a designed tripartite activator called VPR with a modified, non-nuclease version of Cas9.
  • This new regulator successfully activates both coding and noncoding genes, allows for simultaneous targeting of multiple genes, and promotes the differentiation of human induced pluripotent stem cells into neurons.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj71cctp753fbrjd3mherg5rjs3e65jkr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once